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ABSTRACT

We present in this article a direction of arrival estima-
tion algorithm for non circular sources. We show how to
take into account non circularity of signals in array pro-
cessing and develop extensions of classical algorithms.
The main improvement linked to the non circularity con-
cerns the resolution, the variance of estimation and the
number of resolvable sources. These characteristics are
illustrated by simulations and theoretical analysis.

1 INTRODUCTION

Classical sensor array processing has been studied for
many years and a lot of dedicated publication can be
found. New methods based on speci�c signal proper-
ties have also been presented. The aim of these new
methods is to introduce as much information as possible
concerning the signal in order to improve the processing
performances. This a priori information could be cy-
clostationarity or high order statistics for non gaussian
signals.
More recently, several paper have studied the char-

acteristics of non circular complex random signals [1]
[5].
We present in this article a method allowing to in-

troduce this characteristic in array processing technics.
The algorithm used here is MUSIC but the approach
can be extended to other algorithms.

2 NON CIRCULAR SIGNALS

The aim of this part is to present (briey) the main char-
acteristics of non circular signals that is used throughout
this paper. We do not take into consideration statistics
of order higher than two. Moreover, the notations used
in this paper are : T for transpose, � for conjuguate et
H for transpose conjuguate.

A vector of random variables Z is said non circular
(at the order two) if E

�
ZZT

	
6= 0; wich, in term of

probability density, means that no angle � 6= k� can
be found such that Z and Zei� would have the same
probability density.
In array processing, circularity is a natural property

in narrow band analysis because the signal phase is of-
ten uniformly distributed in [0; 2�]. Nevertheless, it is
not universal and we can �nd a lot of signals wich are
not circular (Amplitude Modulation, Binary Phase Shift
Keying, ...)
For such signals, classical array processing (using

only E
�
ZZH

	
) are sub optimal and signi�cant gains

are expected by conducting a complete analysis (using
E
�
ZZH

	
and E

�
ZZT

	
).

3 MUSIC FOR NON CIRCULAR SIGNALS

3.1 Notations

Let us consider an array ofM sensors receiving the con-
tribution of P sources.
The observation vector can be written as follow :

y(t) = A:x(t) + b(t) (1)

with

� y(t) 2 CM�1 : Observation at time t.

� x(t) 2 CP�1 : Emitted signal of the P sources.

� b(t) 2 CM�1 : Additive noise.

� A 2 CM�P : Steering matrix.

A = [a1; a2; : : : ; aP ] (2)

aTk =
�
1; e�j�1; : : : ; e�j�M�1

�
(3)



The P sources are assumed narrow-band, centered on
�0, uncorrelated and P < M .
Moreover, let us consider the following assumptions :

� E fb(t)g = 0 and E fx(t)g = 0

� E
�
b(t)b(t)H

	
= �2Id and E

�
b(t)b(t)T

	
= 0

� E
�
x(t)x(t)H

	
= �1 and E

�
x(t)x(t)T

	
= �2

3.2 Principle of the algorithm

The classical correlation matrix de�ned by

R = E
�
y(t)y(t)H

	
= A�1A

H + �2Id (4)

summarizes completely the statistical characteristics of
the received signal when the sources are gaussian and
circular. However, if the emitted signals are not circular,
we have to take into account not onlyE

�
y(t)y(t)H

	
but

also E
�
y(t)y(t)T

	
.

This can be realised by using the vector ync(t):

ync(t) =

�
y(t)
y(t)�

�
(5)

With this new observation vector, it is possible to
de�ne a correlation matrix summarizing all the second
order statistical characteristics of the received signal :

Rnc = E
�
ync(t)ync(t)

H
	

(6)

It can be show [3] that Rnc, a 2M � 2M matrix, is
written as :

Rnc = Anc�ncA
H
nc + �2Id (7)

where Anc�ncA
H
nc is a 2P rank matrix.

Consequently, we can distinguish a signal subspace
spanned by the �rst 2P eigenvectors of Rnc and a noise
subspace spanned by the 2M � 2P last eigenvectors of
Rnc. If we have a steering vector model, the principle of
the algorithm can be easily deduced from the classical
MUSIC algorithm.

4 AMPLITUDE MODULATED SIGNALS

Let us consider the case of amplitude modulated signals.
The signal sp(t) emitted by the p source is written as :

sp(t) = ep(t)e
�2{��0t (8)

After demodulation and low-pass �ltering, the signal can
be written as :

xp(t) = ep(t)e
{	p (9)

Evidently, these signals are not circular and moreover :

E
�
x(t)x(t)H

	
= �1 (10)

and
E
�
x(t)x(t)T

	
= �1� (11)

with

� =

2
6664
e{2	1 0 � � � 0
0 e{2	2 0 0
...

. . .

0 � � � 0 e{2	P

3
7775 (12)

For this kind of signals, expression (7) becomes after
simpli�cation :

� �nc = �1

� Anc =

�
A

A�:��

�
These situation is particularly interesting since the

dimension of the signal subspace is P even though the
dimension of the observation is 2M . It is then possible
to locate up to 2(M � 1) sources (to be compared at
M � 1 sources with standard MUSIC).
The algorithm implementation is very similar to the

standard one. After the eigen elements decomposition
of Rnc, we de�ne the signal and noise subspaces with
respectively the �rst P eigenvectors of Rnc and the last
2M � P eigenvectors of Rnc :

Rnc = Us nc�ncUs nc
H + �2Ub ncUb nc

H (13)

The steering vector can be deduced by the expression
of Anc :

anc(�;	) =

�
a(�)
a(�)�:e2i	

�
(14)

where a(�) is the classical steering vector represent-
ing the phase shifts between sensors for a source with
parameter �. This steering vector depends on the direc-
tion of arrival but also on the demodulation phase 	p

for the source p. Since the eigenvectors associated with
the noise are orthogonal to Anc, we obtain, when � and
	 correspond to the true parameters of a sources :

Ub nc
H
anc(�;	) = 0 (15)

This lead to maximise the expression :

f(�;	) =
1

anc(�;	)HUb ncUb nc
H
anc(�;	)

(16)

The expression (16) is a two dimension functionnal.

Meanwhile, for a given value of �, it is possible to com-
pute analyticaly (see [3] for demonstration) the value of
	 maximising (16).
The maximisation of (16) is then reduced to the max-

imisation of a one dimensional functionnal :

f(�) =
1

P1 � kP12k
(17)

with

� Ub nc =

�
U1

U2

�

� P1 = a(�)HU1U1
Ha(�)

� P12 = a(�)TU2U1
H
a(�)

� a(�) : classical steering vector.



5 MORE SOURCES THAN SENSORS

As ync =

�
0 Id

Id 0

�
ync

� it can be shown that the

eigenvectors U1 and U2 are in relationship :

U1 =U2
HD (18)

where D is a unitary diagonal matrix.

When the dimension of the noise subspace is equal to
one (2M�1 signals) then P1 = kP12kwhatever the value
of the angle �. The maximum number of localizable
signals is equal to 2(M � 1).

We can �nd an intuitive solution of this problem. We
can imagine that we make a 'virtual' antenna which
holds the informations about y(t)� (�gure 1). Yet, the
reference sensor used for the �rst antenna is also used
for the virtual one. So, the number of 'sensors' becomes
2M � 1 for this kind of treatment, and we can locate
2M � 2 sources.

ϕ*

Reference sensor

Sensors

'Virtual' sensors

ϕ

Figure 1: Localization of 2M-2 sources with M sensors

6 THEORETICAL VARIANCE

The MUSIC functionnal to be minimized reads :

f(�;	) = trace(�̂nanc(�;	)anc(�;	)
H ) (19)

which can be written as :

f(�;	) = trace(�̂nS) (20)

where �̂n is the estimated projector on the noise sub-
space.

The computation of the variance is based on a �rst
order expansion of the �rst order derivatives of f(�;	):

0 = _f +H

�
��

� 

�
(21)

with

� _f =

�
@f

@�
(�0;	0)

@f

@	
(�0;	0)

�

� H =

"
@2f

@2�
(�0;	0)

@2f

@	@�
(�0;	0)

@2f

@�@	
(�0;	0)

@2f

@2	
(�0;	0)

#

and a �rst order expansion of �̂n = �n + ��n.
It can be shown [4] that :

���n = ��S =M�R�n +�n�RM (22)

with

M =

PX
i=1

1

�i � �
uiui

H (23)

� ui signal subspace eigenvectors

� � noise power

� �R errors in the covariance matrix estimation.

The error covariance Cov

�
��

� 

�
= H�1E[ _f _fT ]H�1

is computed from the following quantities :

� @f
@�
(�0;	0) = �trace(��S

@S
@�
)

� @f

@	
(�0;	0) = �trace(��S

@S
@	

)

� @2f
@2�

(�0;	0) = 2trace(�n
@anc
@�

H
)

� @2f
@	@�

(�0;	0) = 2Real(@anc
@�

H
�n

@anc
@	

)

In order to compute E[ _f _fT ] one needs to evaluate
terms like

E[trace(��SA)trace(��SB)] =

E[trace(�RA1)trace(�RB1)] (24)

with A1 =MA�n +�nAM.
They may be expressed as [2] :

E[trace(�RA1)trace(�RB1)] =

1

N
[trace(RB1RA1) + trace(~RBT

1
~R�A1)] (25)

with R = E[yncync
H ], and ~R = E[yncync

T ]. Variance
of Music and Non Circular Music are compared in the
next section.

7 ILLUSTRATIONS

The ability of the algorithm to resolve more sources than
sensors has been veri�ed with many simulations. We
have performed theoritical and experimental studies of
both MUSIC and Non Circular MUSIC estimation vari-
ance and resolution. They showed that Non Circular
MUSIC outperform MUSIC.
In the simulations, we choose an array of 4 sen-

sors (�3db = 45 degrees). Six sources are simulated
and their directions of arrival (DOA) are equal to
�60;�30;�10; 0; 20; 50 degrees. The results of the DOA
estimation with Non Circular MUSIC are presented on
�gure 2 for 100 simulations. With 4 sensors, we can
locate 6 sources.
On �gure 3 and 4, 2 sources are simulated. The DOA

are equal to 0 and �3 degrees. The �gure 3 shows the



−80 −60 −40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

Directions (degrees)

S
im

ul
at

io
ns

Figure 2: Localization of 6 sources with 4 sensors

results of the DOA estimated by the classical MUSIC
algorithm for 100 simulations. The �gure 4 shows the
results for the same simulations with the modi�ed al-
gorithm and we can see the improvement in term of
variance of estimation.
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Figure 3: Localization with MUSIC

On �gure 5, 2 sources are simulated. The DOA
are equal to 0 and the second DOA varies from �65
to �5 degrees. This simulation shows the theoretical
(lines) and experimental (�) standard deviation for the
2 sources. We can see that the standard deviation is
divided by 10 when the 2 sources are close (5 degrees).

8 CONCLUSION

We have presented a new approach allowing to introduce
the non circularity in the estimation of the angular lo-
calization of sources. The developed method, without
drastically increasing the complexity of the MUSIC al-
gorithm ,allows us to take into account the speci�city of
non circular signals. The performances of the estima-
tor are signi�cantly improved. The main improvements
concern the number of resolvable sources , the variance
of estimation and the resolution.
The algorithmused here is an extension of the MUSIC

algorithm but other array processing, such Capon or
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Figure 4: Localization with Non Circular MUSIC
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Figure 5: Standard deviation

root-MUSIC algorithm, could be considered from the
non circular correlation matrix.
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