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ABSTRACT

Digital Nth-band linear-phase nonrecursive and Nth-band
recursive filters are special digital filter classes playing an im-
portant role in various applications. Both these filter classes
are named according to their frequency-domain characteris-
tics. This paper reviews the properties of these filters as well
as their usefulness in several digital signal processing appli-
cations. Also their optimization for various applications is
considered.

1 Introduction

Digital Nth-band FIR and IIR filters [1]-[11] (see also ref-
erences in [11]) have somewhat different frequency domain
and time domain properties, but they posses also many com-
mon characteristics. In the lowpass case, these filters have a
(3 dB or 6 dB) bandwidth of 7/N and the transition band
is approximatively symmetric around this frequency. Both
FIR and ITR Nth-band filters are quite efficient to imple-
ment. Especially, downsampling and upsampling operations
can be combined very efficiently with these filters. This prop-
erty makes Nth-band filters very interesting for all multi-
rate signal processing applications. Also bandpass and high-
pass version can be obtained, e.g., by complex or cosine-
modulation. In this way, also efficient Hilbert transfomers
can be derived from lowpass Nth-band filters [12]. Also
critically-sampled perfect reconstruction analysis-synthesis
filter banks and transmultiplexers have a close relationship
to Nth-band filters [13]-[18]. However, in this paper we con-
centrate on the lowpass case.

In the time domain, a characteristic property of Nth-band
filters is that its impulse response has zero crossings at a reg-
ular distance, at all multiples of N samples away from the
central sample. This is the so-called zero intersymbol inter-
ference property of the Nyquist pulse-shaping filters, a con-
cept which is one of the corner-stones of bandwidth-efficient
digital transmission systems [19]. Traditionally, raised co-
sine filters or a pair of square-root raised-cosine filters have
has been utilized in digital transmission systems. A digital
implementation of a raised cosine filter is actually a special
type of Nth-band filter. In practise, raised-cosine filters suf-
fer from the nonideal stopband response due to truncation
of the ideal infinite-length impulse response, and better solu-
tions can be found by filter optimization techniques [1], [3],
[6], [9].

This paper reviews some basic properties of Nth-band FIR,
and IIR filters and illustrates their usefulness in various dig-
ital signal processing applications in terms of examples.

2 Nth-Band Linear-Phase FIR Filters

This section considers some basic properties of Nth-band
linear-phase FIR filters. Their transfer function is of the

Figure 1: Typical impulse response and zero-phase frequency

response for an FIR Nth-band FIR filter.

form
H(z)=Y h(n)z", (1)

where the impulse-response coefficients are symmetric, that
is, h(2M —n) = h(n) for n =0,1,---,2M. This filter is said
to be an Nth-band filter if (see Fig. 1)

h(M)=1/N, h(M £rN)=0 for r=1,2,---,|M/N|,

(2)
where |z| stands for integer part of z.
The frequency response of the above filter is expressible
as
H(e™) = e M H(w), (3a)

where the zero-phase frequency response H(w) is given by
M
H(w)=1/N+2 " h(M = n)cos(nw). (3b)
n=1

It can be shown [2] that the time-domain conditions of
Eq. (2) are equivalent to the following frequency-domain con-
dition:

=

- H(w+2mr/N) =1. (4)

r

Based on this condition, the passband (stopband) in the
lowpass case is restricted to be smaller (larger) than =/N.
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Figure 2: Implementations of a multistage FIR Nth-band
filter for sampling rate conversion. (a) Decimator. (b) Inter-
polator.

Usually, the passband and stopband edge angles, denoted by
wp and ws, are specified as (see Fig. 1)

wp= (L= p)7/N, ws=(1+p)7/N, (5)

where p > 0 is called the rolloff of the filter. For designing
Nth-band FIR filters for other cases, see [10].

It follows also that if the maximum deviation of H (w) from
zero in the stopband region [ws, 7] is ds, then §p, the max-
imum deviation of H(w) from unity in the passband region
[0, wp] is satisfies 6, < (L — 1)ds. This implies that for a
small value of 65, 6, is automatically small. Therefore, when
designing FIR Nth-band filters the synthesis can concentrate
on shaping the stopband response.

3 Various Classes of Nth-Band FIR filters
This section considers different classes of Nth-band FIR fil-

ters.

3.1 Multistage Filters
If N is factorizable into the product N = N; - Na--- Nk,

then the overall Nth-band filter can be contsructed in terms
of K Nith-band FIR filters with transfer functions of the
form

2M;,

Hi(2) = hi(n)z™", for k=1,2--,K, (6)
n=0

where each impulse response hj(n) is symmetric and satisfies
the conditions of Eq. (2) with N = N, and M = Mj. The
desired overall filter is then expressible as [6]

H(z) =[] B "), (7a)

K
Lx=1 L= H Np k=1,2,---K—1.  (7b)
l=k+1

In the above equation, instead of a unit delay z~!, there is
a block delay z~%* for all the terms except for Hx(z). The
order of this filter is 2M = 2(L1 M1 + LoMs +- - -+ Lx Mk).

The main advantage of the above decomposition is that
the number of multipliers is significantly reduced compared
to the direct-form implementation. Furthermore, if the over-
all filter is used for decimation or interpolation by a factor
of N, then it can be implemented as shown in Fig. 2. Note
that in these implementations unit delays are used.

The zero-phase frequency response of the above multistage
filter is given by

H(w) = H Hiy(Lyw). (8)
k=1

3.2 Separable Filters

In pulse shaping in telecommunication applications, it is de-
sired that the overall Nth-band (Nyquist) filter is factoriz-
able as [9], [19]

H(z) =T(2)R(2) (9a)

where

T(z)=[[Te(z"), R(z) =] Re(z"*).  (90)

k=1 k=1

Here, the half-Nyquist filters T%(z) and Ry(z) are obtained
by factorizing Hy(z) as

Hy(z) = Tr(z)Ri(z) (10)

where Ti(z) and Ry (z) have the same magnitude responses
and their impulse responses are time-reversed versions of
each other, that is, Ri(z) = 2~ M*Ty(27"), where M is half
the order of Hy(z2).

In this case, it is required that the zero-phase frequency re-
sponses Hy(w) for k =1,2,--., K are non-negative on [0, 7]
in order to make Hy(z) factorizable in the desired manner.

In communication theory, T'(z) and R(z) are referred to
as a matched filter pair and they are used as transmitter
and reciever filters, respectively. T'(z) and R(z) and can be
effectively implemented in a manner similar to Figs. 2(b) and
2(a), respectively.

4 Optimization of Nth-Band FIR Filters and De-
sign Examples

This section illustrates the filter optimization in terms of
examples.

4.1 Example 1: Design of Nonseparable Filters
It is desired to design an Nth-band FIR filter to meet in
the minimax sense the criteria: N = 8, p = 0.2, and the
minimum stopband attenuation is at least 40 dB. Given K,
the number of stages, the problem is to find Ni’s and the
minimum overall orders 2M}, for k =1,2,---, K to meet the
given criteria and then to optimize the filter parameters to
minimize
Foo = max
w€[(1+p)m/N, =]

[W(w)H ()], (11)
where H(w) is given by Eq.(8) and W (w) is a positive weight
function on [(1 + p)7/N, =].

For K =1, these criteria are met by 2M = 74. When ex-
ploiting the coefficient symmetry and the facts that h(37) =
27% and h(37 £ 8r) =0 for » = 1,2, 3,4, only 32 multipliers
are required to implement this filter. The implementation of
the central coefficient h(37) = 272 is trivial. For K = 3, the
given criteria are met by N; = N = N3 = 2 and 2M; = 18,
2M> = 2Ms = 6. In this case, only 4 + 2 + 2 = 8 multi-
pliers are required. The price paid for the reduction in the
number of multipliers from 32 to 8 compared to the direct
design is a slight increase in the overall filter order (from 74
to 90). Figures 3(a) and 3(b) show the responses for Hy(z*),
Hs(2%), and H3(z) as well as that of the overall filter. The
subfilters have been iteratively designed using the technique
proposed in [6]. As seen from these two figures, H1(z*) pro-
vides for the overall filter an equiripple stopband behavior on
[(1+p)/8, 7/4], whereas Ha(2?) and H3(z) and attenuate in
the minimax sense the extra passbands and transition bands
of Hy(z*) located around w = 7/2 and w = =, respectively.

The impulse response of the overall filter is depicted in
Fig. 3(c), whereas the overall filter optimized in the least-
mean-square sense with the same subfilter orders is shown
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Figure 3: Responses for three-stage filters of Example 1.
(a) Amplitude responses for the subfilters. (b) and (c) Am-
plitude and impulse responses for the overall minimax N th-
band FIR filter. (d) Amplitude response for the least squared
filter design.

in Fig. 3(d). In this case, the impulse-response coefficients
are determined to minimize

B = /
(1+p)~/N

The frequency-response-shaping responsibilities are shared
like for the corresponding minimax filter design. It should be
point out that linear programming [7], [8] can be also used
for designing subfilters in the minimax sense, whereas the
synthesis method proposed in [5] can be used for designing
these filters in the least-mean square sense.

[W () H ()] dw. (12)

4.2 Example 2: Design of Separable Filters

It is desired to design a separable Nth-band FIR filter to
meet in the minimax sense the criteria: N = 8, p = 0.2,
and the minimum stopband attenuation is at least 40 dB for
R(z) and T'(z). For the overall separable filter, the mini-
mum attenuation is thus 80 dB. In this case, the problem
is to find the filter parameters to mininize F, as given by
Eq. (11) subject to the condition that H(w) is nonnegative.
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Figure 4: Responses for three-stage filters of Example 2.
(a) Common amplitude response for T'(z) and R(z) designed
in the minimax sense. (b) Common amplitude response for
T(z) and R(z) designed in the least-mean-square sense.

The subfilters can be effectively optimized using the syn-
thesis scheme proposed in [20]. To meet these criteria with
K =1, 2M = 202 is required For K = 3, the criteria are met
by N1 = N2 = N3 = 2, 2M1 = 50, 2M2 = 18, and 2M3 = 10.
When the overall filter is split into the minimim-phase part
T'(z) and the maximum phase part R(z), both T'(z) and R(z)
require 102 multipliers in the K = 1 case and 42 multipli-
ers in the K = 3 case. The price paid for this reduction
is a slight increase in the overall filter order (from 202 to
246). Figure 4(a) shows in the three-stage case the common
amplitude response T'(z) and R(z), whereas Fig. 4(b) shows
the corresponding response for a filter designed in the least-
mean-square sense. In this case, the filter parameters are
desired to be determined to minimize

EQ = i W(w)H (w)]dw 13
/(HPW[ () ()] (13)

subject to the condition that H(w) is nonnegative on [0, w].
For this purpose, the authors have generated a MATLAB
routine. Note that in this case, H(w) = |Hr(e7“))? =
|Hr(e’)[.

5 Nth-Band IIR filters

This section considers some basic properties of N-band IIR
filters. These filters are a special class of filters having the
following polyphase decomposition

H(z) = % S e AL Y. (14)

For these filters, the A, (z)’s are stable allpass filters of the

form l
b Zl:% a(n)(l)zf(K”f )

DiZoa™ (="

The order of A,(z) is kn + K, and it contains K,, adjustable
parameters so that the overall number of parameters is

N-1
K = Z [(n (16)
n=0

An(2) = (15)



The order of the nth branch filter 27" A, (2" ) is n+ N (kn +
K,). In order to achieve a good frequency response, it
is required that the branches can be ordered such that
n + N(kn, + K,) increases by one between two consecutive
branches [11].

There exist two classes of Nth-band IIR filters, namely
nonlinear phase filters and approximately linear phase fil-
ters. For the first filter class, k, =0 for n =0,1,---, N — 1.
These filters have a very attractive property that all the all-
pass filters are cascades of first-order section, making the
implementation very efficient. For the second class, there
exists one branch having k, # 0 and K,, = 0, whereas for
the other braches k, = 0 and K, # 0.

It has been shown in [11] that for the Nth-band IIR filters
it is valid that

N-1

Z |H—(ej(u+27r'r‘/N)|2 -1, (17)

r=0

Based on this fact, the passband and stopband edges for
these filters are given by Eq. (5). However, for these TR
filters, the stopband region is a multiband region between
ws and 7. It constains don’t-care bands of width 2p7w/N at
odd multiples of 7/N. This is illustrated in Fig. 5 showing
the amplitude response for a seventh-band IIR filter with
p=0.2 and K = 18. In this case Ax(z) for k =0,1,2,3 are
cascades of three first-order allpass filters, whereas A (z) for
k =4,5,6 are cascades of two first-order allpass filters.
Secondly, if the maximum deviation of the squared-
magnitude response from zero on the multiband stopband

region is ds, then the squared-magnitude response oscil-
lates in the passband region between 1 and 1 — §,, where
5p < (N —1)4,. As seen from Fig. 5, this makes the pass-

band ripple extremely small for a small value of 3\5.
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Figure 5: Amplitude response for a seventh-band IIR filter.

6 Applications of Recursive Nth-Band Filters

This section concentrates on the usefulness of recursive Nth-
band filters in various digital signal processing applications.

6.1 Design of Decimators and Interpolators

These filters have turned out to be best ones in constructing
nonlinear-phase decimators and interpolators. To illustrate
this, we consider the following specifications: the decima-
tion ratio is N = 20, the passband edge is 0.97 /N, the stop-
band edge is /N, the stopband ripple for the amplitude
response is 0.005 (46-dB attenuation), and in the passband
the amplitude response oscillates between unity and 1 —0.1.
As shown in [11], an effective overall solution is obtained
by using three filter stages. The first stage with transfer
function Hi(z) provides decimation by 5, the second stage
with transfer function H2(z) decimates by 4, and the last
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Figure 6: Design of a 20-to-1 decimator using two N th-band
recursive filters and an corrector filter at the output sampling
rate.

filter stage with transfer function Hs(z) works at the out-
put sampling rate. For analysis purposes, this corresponds
to the case where the single-stage overall transfer function is
H(z) = H3(2*°)H2(2°)H,(z) before decimation by N = 20.
Figure 6 illustrates how to construct the desired overall dec-
imator. H2(z) has been designed in such a way that Hs(z°)
provides for the overall filter the desired stopband atten-
uation in bands [277/20 — 0.97/20, 27r/20 + 0.97/20] for
r=1,2,3,5,6,7,9,10. The role of Hi(z) is to provide the
desired attenuation in the bands for » = 4 and r = 8. For
Hy(2°)Hi1(2) the stopband starts at w = 1.17/20, instead
of w = w/20. Futhermore, there are peaks in the stopband
region. The desired overall response is obtained by using
H3(z) at the filter output in such a way that H2(z*°) pro-



vides the desired attenuation in the band [7/20, 1.17/20]
and attenuates the undesired peaks in the stopband region.

When practically implementing H1(z) and H»2(z), a com-
mutative structure is very useful [11]. In this case, there is
no need to implement the extra delays in the branch filters
and A, (z)’s, instead of A,(z")’s, are implemented. In our
example case, the first four allpass filters of Hi(z) are first-
order sections, whereas the last one is just a direct line. For
Ho(2), the first allpass section is a cascade of three first-order
allpass sections, whereas the last three filters are cascades of
two first-order sections. H3(z) is simply a parallel connection
of first-order and second-order allpass filters.

6.2 Design of Nyquist Filters

As we have defined them, IIR. Nth-band filters have a 3-
dB attenuation at /N, whereas FIR Nth-band filters have
a 6-dB attenuation at this frequency. Comparing Eqs. (4)
and (17), we can see that the squared magnitude response
of an IIR Nth-band filter satisfies the same property as
the frequency response of the zero-phase FIR Nth-band fil-
ter. This means that the cascade of an Nth-band IIR fil-
ter, H(z), and the anti-causal TIR filter H(27!) satisfies the
frequency-domain condition of an FIR Nth-band filter and,
consequently, satisfies the zero-crossing (zero ISI) property
of Nyquist filters. H(z) and H(z~") are a matched filter pair,
i.e., the impulse responses are mirror images of each other.
The anti-causal filter H(27') can in some cases be imple-
mented by filtering the data in the reverse direction with
H(z). For other cases, there are approximative methods to
implement it [9].

In the case of N = 2, halfband IIR filters can be designed
as a special case of elliptic filters (or other classical lowpass
TIR filter types). This means that it is possible to satisfy the
zero intersymbol interference property using an elliptic half-
band filter together with the corresponding anticausal mirror
image impulse response for pulse shaping. For power-of-two
oversampling ratios, it is possible to design half-Nyquist fil-
ters using a cascade of halfband filters. For other values of
N, Nth-band IIR filters cannot be used as Nyquist filters as
such, since the don’t-care bands between the stopbands can-
not be tolerated. However, for even values of N, solutions
where the first interpolator stage (last decimator stage) is a
halfband ITR filter are feasible, since a continuous stopband
from ws to ™ can be achieved in this case.

We can also notice that in the case of approximatively
linear-phase IIR Nyquist filters, both the transmitter and
receiver half-Nyquist filters, as well as the cascade satisfy
the time-domain zero-crossing property. This is because in
this case one of the polyphase branches of each interpola-
tor/decimator stage is a pure delay. It can also be shown
that in the case of N = 2, the approximatively linear-phase
ITR half-Nyquist filters are the only filter class having this
property [21].

Recent experience has revealed one drawback in using IR
Nth-band filters for transmitter pulse shaping: the peak en-
velope value of the modulated signal is higher than when us-
ing square-root raised-cosine filters. Separable FIR Nyquist
filters with nonlinearphase filter for 7'(z) suffer from the same
problem, which is rather critical in applications where the
transmitter power consumption should be minimized. On
the other hand, for other applications ITR Nyquist filters of-
fer a solution with low implementation complexity.

As an example we consider the design of a nonseparable
Nyquist filter with N = 8 and p = 0.8. Such a filter can
be implemented as H(z) = Hi(z*)H2(2?)Hz3(2), where the
Hy(z) are of the form Hy(z) = [z 4+ Ap(2%)]/2. A 40-dB
attenuation is achieved by Ny = 7, N» = 3, N3 = 1, and
Ar(z)’s of orders 4, 2, and 1 for k = 1, 2, 3, respectively.
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