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ABSTRACT

Digital Nth-band linear-phase nonrecursive and Nth-band
recursive �lters are special digital �lter classes playing an im-
portant role in various applications. Both these �lter classes
are named according to their frequency-domain characteris-
tics. This paper reviews the properties of these �lters as well
as their usefulness in several digital signal processing appli-
cations. Also their optimization for various applications is
considered.

1 Introduction

Digital Nth-band FIR and IIR �lters [1]{[11] (see also ref-
erences in [11]) have somewhat di�erent frequency domain
and time domain properties, but they posses also many com-
mon characteristics. In the lowpass case, these �lters have a
(3 dB or 6 dB) bandwidth of �=N and the transition band
is approximatively symmetric around this frequency. Both
FIR and IIR Nth-band �lters are quite e�cient to imple-
ment. Especially, downsampling and upsampling operations
can be combined very e�ciently with these �lters. This prop-
erty makes Nth-band �lters very interesting for all multi-
rate signal processing applications. Also bandpass and high-
pass version can be obtained, e.g., by complex or cosine-
modulation. In this way, also e�cient Hilbert transfomers
can be derived from lowpass Nth-band �lters [12]. Also
critically-sampled perfect reconstruction analysis-synthesis
�lter banks and transmultiplexers have a close relationship
to Nth-band �lters [13]{[18]. However, in this paper we con-
centrate on the lowpass case.
In the time domain, a characteristic property of Nth-band

�lters is that its impulse response has zero crossings at a reg-
ular distance, at all multiples of N samples away from the
central sample. This is the so-called zero intersymbol inter-
ference property of the Nyquist pulse-shaping �lters, a con-
cept which is one of the corner-stones of bandwidth-e�cient
digital transmission systems [19]. Traditionally, raised co-
sine �lters or a pair of square-root raised-cosine �lters have
has been utilized in digital transmission systems. A digital
implementation of a raised cosine �lter is actually a special
type of Nth-band �lter. In practise, raised-cosine �lters suf-
fer from the nonideal stopband response due to truncation
of the ideal in�nite-length impulse response, and better solu-
tions can be found by �lter optimization techniques [1], [3],
[6], [9].
This paper reviews some basic properties ofNth-band FIR

and IIR �lters and illustrates their usefulness in various dig-
ital signal processing applications in terms of examples.

2 Nth-Band Linear-Phase FIR Filters

This section considers some basic properties of Nth-band
linear-phase FIR �lters. Their transfer function is of the
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Figure 1: Typical impulse response and zero-phase frequency
response for an FIR Nth-band FIR �lter.

form

H(z) =

2MX
n=0

h(n)z
�n
; (1)

where the impulse-response coe�cients are symmetric, that
is, h(2M �n) = h(n) for n = 0; 1; � � � ; 2M . This �lter is said
to be an Nth-band �lter if (see Fig. 1)

h(M) = 1=N; h(M � rN) = 0 for r = 1; 2; � � � ; bM=Nc;
(2)

where bxc stands for integer part of x.
The frequency response of the above �lter is expressible

as
H(e

j!
) = e

�jM!
H(!); (3a)

where the zero-phase frequency response H(!) is given by

H(!) = 1=N + 2

MX
n=1

h(M � n) cos(n!): (3b)

It can be shown [2] that the time-domain conditions of
Eq. (2) are equivalent to the following frequency-domain con-
dition:

N�1X
r=0

H(! + 2�r=N) = 1: (4)

Based on this condition, the passband (stopband) in the
lowpass case is restricted to be smaller (larger) than �=N .
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Figure 2: Implementations of a multistage FIR Nth-band
�lter for sampling rate conversion. (a) Decimator. (b) Inter-
polator.

Usually, the passband and stopband edge angles, denoted by
!p and !s, are speci�ed as (see Fig. 1)

!p = (1� �)�=N; !s = (1 + �)�=N; (5)

where � > 0 is called the rollo� of the �lter. For designing
Nth-band FIR �lters for other cases, see [10].
It follows also that if the maximum deviation ofH(!) from

zero in the stopband region [!s; �] is �s, then �p, the max-
imum deviation of H(!) from unity in the passband region
[0; !p] is satis�es �p � (L � 1)�s. This implies that for a
small value of �s, �p is automatically small. Therefore, when
designing FIR Nth-band �lters the synthesis can concentrate
on shaping the stopband response.

3 Various Classes of Nth-Band FIR �lters

This section considers di�erent classes of Nth-band FIR �l-
ters.

3.1 Multistage Filters

If N is factorizable into the product N = N1 � N2 � � �NK ,
then the overall Nth-band �lter can be contsructed in terms
of K Nkth-band FIR �lters with transfer functions of the
form

Hk(z) =

2M
kX

n=0

hk(n)z
�n
; for k = 1; 2; � � � ; K; (6)

where each impulse response hk(n) is symmetric and satis�es
the conditions of Eq. (2) with N = Nk and M = Mk. The
desired overall �lter is then expressible as [6]

H(z) =

KY
k=1

Hk(z
L
k ); (7a)

where

LK = 1; Lk =

KY
l=k+1

Nk k = 1; 2; � � �K � 1: (7b)

In the above equation, instead of a unit delay z�1, there is
a block delay z�Lk for all the terms except for HK(z). The
order of this �lter is 2M = 2(L1M1+L2M2+ � � �+LKMK).
The main advantage of the above decomposition is that

the number of multipliers is signi�cantly reduced compared
to the direct-form implementation. Furthermore, if the over-
all �lter is used for decimation or interpolation by a factor
of N , then it can be implemented as shown in Fig. 2. Note
that in these implementations unit delays are used.
The zero-phase frequency response of the above multistage

�lter is given by

H(!) =

KY
k=1

Hk(Lk!): (8)

3.2 Separable Filters

In pulse shaping in telecommunication applications, it is de-
sired that the overall Nth-band (Nyquist) �lter is factoriz-
able as [9], [19]

H(z) = T (z)R(z) (9a)

where

T (z) =

KY
k=1

Tk(z
L
k ); R(z) =

KY
k=1

Rk(z
L
k): (9b)

Here, the half-Nyquist �lters Tk(z) and Rk(z) are obtained
by factorizing Hk(z) as

Hk(z) = Tk(z)Rk(z) (10)

where Tk(z) and Rk(z) have the same magnitude responses
and their impulse responses are time-reversed versions of
each other, that is, Rk(z) = z�MkTk(z

�1), where Mk is half
the order of Hk(z).
In this case, it is required that the zero-phase frequency re-

sponses Hk(!) for k = 1; 2; � � � ; K are non-negative on [0; �]
in order to make Hk(z) factorizable in the desired manner.
In communication theory, T (z) and R(z) are referred to

as a matched �lter pair and they are used as transmitter
and reciever �lters, respectively. T (z) and R(z) and can be
e�ectively implemented in a manner similar to Figs. 2(b) and
2(a), respectively.

4 Optimization of Nth-Band FIR Filters and De-
sign Examples

This section illustrates the �lter optimization in terms of
examples.

4.1 Example 1: Design of Nonseparable Filters

It is desired to design an Nth-band FIR �lter to meet in
the minimax sense the criteria: N = 8, � = 0:2, and the
minimum stopband attenuation is at least 40 dB. Given K,
the number of stages, the problem is to �nd Nk's and the
minimum overall orders 2Mk for k = 1; 2; � � � ; K to meet the
given criteria and then to optimize the �lter parameters to
minimize

E1 = max
!2[(1+�)�=N; �]

jW (!)H(!)j; (11)

where H(!) is given by Eq.(8) andW (!) is a positive weight
function on [(1 + �)�=N; �]:
For K = 1, these criteria are met by 2M = 74. When ex-

ploiting the coe�cient symmetry and the facts that h(37) =

2�3 and h(37� 8r) = 0 for r = 1; 2; 3; 4, only 32 multipliers
are required to implement this �lter. The implementation of
the central coe�cient h(37) = 2�3 is trivial. For K = 3, the
given criteria are met by N1 = N2 = N3 = 2 and 2M1 = 18,
2M2 = 2M3 = 6. In this case, only 4 + 2 + 2 = 8 multi-
pliers are required. The price paid for the reduction in the
number of multipliers from 32 to 8 compared to the direct
design is a slight increase in the overall �lter order (from 74

to 90). Figures 3(a) and 3(b) show the responses for H1(z
4),

H2(z
2), and H3(z) as well as that of the overall �lter. The

sub�lters have been iteratively designed using the technique
proposed in [6]. As seen from these two �gures, H1(z

4) pro-
vides for the overall �lter an equiripple stopband behavior on
[(1+�)=8; �=4], whereas H2(z

2) and H3(z) and attenuate in
the minimax sense the extra passbands and transition bands
of H4(z

4) located around ! = �=2 and ! = �, respectively.
The impulse response of the overall �lter is depicted in

Fig. 3(c), whereas the overall �lter optimized in the least-
mean-square sense with the same sub�lter orders is shown
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Figure 3: Responses for three-stage �lters of Example 1.
(a) Amplitude responses for the sub�lters. (b) and (c) Am-
plitude and impulse responses for the overall minimax Nth-
band FIR �lter. (d) Amplitude response for the least squared
�lter design.

in Fig. 3(d). In this case, the impulse-response coe�cients
are determined to minimize

E2 =

Z �

(1+�)�=N

[W (!)H(!)]
2
d!: (12)

The frequency-response-shaping responsibilities are shared
like for the corresponding minimax �lter design. It should be
point out that linear programming [7], [8] can be also used
for designing sub�lters in the minimax sense, whereas the
synthesis method proposed in [5] can be used for designing
these �lters in the least-mean square sense.

4.2 Example 2: Design of Separable Filters

It is desired to design a separable Nth-band FIR �lter to
meet in the minimax sense the criteria: N = 8, � = 0:2,
and the minimum stopband attenuation is at least 40 dB for
R(z) and T (z). For the overall separable �lter, the mini-
mum attenuation is thus 80 dB. In this case, the problem
is to �nd the �lter parameters to mininize E1 as given by
Eq. (11) subject to the condition that H(!) is nonnegative.
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Figure 4: Responses for three-stage �lters of Example 2.
(a) Common amplitude response for T (z) and R(z) designed
in the minimax sense. (b) Common amplitude response for
T (z) and R(z) designed in the least-mean-square sense.

The sub�lters can be e�ectively optimized using the syn-
thesis scheme proposed in [20]. To meet these criteria with
K = 1, 2M = 202 is required For K = 3, the criteria are met
by N1 = N2 = N3 = 2, 2M1 = 50, 2M2 = 18, and 2M3 = 10.
When the overall �lter is split into the minimim-phase part
T (z) and the maximum phase part R(z), both T (z) and R(z)
require 102 multipliers in the K = 1 case and 42 multipli-
ers in the K = 3 case. The price paid for this reduction
is a slight increase in the overall �lter order (from 202 to
246). Figure 4(a) shows in the three-stage case the common
amplitude response T (z) and R(z), whereas Fig. 4(b) shows
the corresponding response for a �lter designed in the least-
mean-square sense. In this case, the �lter parameters are
desired to be determined to minimize

bE2 =

Z �

(1+�)�=N

[W (!)H(!)]d! (13)

subject to the condition that H(!) is nonnegative on [0; �].
For this purpose, the authors have generated a MATLAB
routine. Note that in this case, H(!) = jHT (e

j!)j2 =

jHR(e
j!)j2.

5 Nth-Band IIR �lters

This section considers some basic properties of N -band IIR
�lters. These �lters are a special class of �lters having the
following polyphase decomposition

H(z) =
1

N

N�1X
n=0

z
�n
An(z

N
): (14)

For these �lters, the An(z)'s are stable allpass �lters of the
form

An(z) = z�kn

PKn

l=0
a(n)(l)z�(Kn�l)PKn

l=0
a(n)(l)z�l

: (15)

The order of An(z) is kn+Kn and it contains Kn adjustable
parameters so that the overall number of parameters is

K =

N�1X
n=0

Kn (16)



The order of the nth branch �lter z�nAn(z
N ) is n+N(kn+

Kn). In order to achieve a good frequency response, it
is required that the branches can be ordered such that
n + N(kn + Kn) increases by one between two consecutive
branches [11].
There exist two classes of Nth-band IIR �lters, namely

nonlinear phase �lters and approximately linear phase �l-
ters. For the �rst �lter class, kn � 0 for n = 0; 1; � � � ; N � 1.
These �lters have a very attractive property that all the all-
pass �lters are cascades of �rst-order section, making the
implementation very e�cient. For the second class, there
exists one branch having kn 6= 0 and Kn = 0, whereas for
the other braches kn = 0 and Kn 6= 0.
It has been shown in [11] that for the Nth-band IIR �lters

it is valid that

N�1X
r=0

jH(e
j(!+2�r=N

)j
2
= 1: (17)

Based on this fact, the passband and stopband edges for
these �lters are given by Eq. (5). However, for these IIR
�lters, the stopband region is a multiband region between
!s and �. It constains don't-care bands of width 2��=N at
odd multiples of �=N . This is illustrated in Fig. 5 showing
the amplitude response for a seventh-band IIR �lter with
� = 0:2 and K = 18. In this case Ak(z) for k = 0; 1; 2; 3 are
cascades of three �rst-order allpass �lters, whereas Ak(z) for
k = 4; 5; 6 are cascades of two �rst-order allpass �lters.
Secondly, if the maximum deviation of the squared-

magnitude response from zero on the multiband stopband

region is b�s, then the squared-magnitude response oscil-

lates in the passband region between 1 and 1 � b�p, whereb�p � (N � 1)b�s: As seen from Fig. 5, this makes the pass-

band ripple extremely small for a small value of b�s.
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Figure 5: Amplitude response for a seventh-band IIR �lter.

6 Applications of Recursive Nth-Band Filters

This section concentrates on the usefulness of recursive Nth-
band �lters in various digital signal processing applications.

6.1 Design of Decimators and Interpolators

These �lters have turned out to be best ones in constructing
nonlinear-phase decimators and interpolators. To illustrate
this, we consider the following speci�cations: the decima-
tion ratio is N = 20, the passband edge is 0:9�=N , the stop-
band edge is �=N , the stopband ripple for the amplitude
response is 0.005 (46-dB attenuation), and in the passband
the amplitude response oscillates between unity and 1� 0:1.
As shown in [11], an e�ective overall solution is obtained
by using three �lter stages. The �rst stage with transfer
function H1(z) provides decimation by 5, the second stage
with transfer function H2(z) decimates by 4, and the last
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Figure 6: Design of a 20-to-1 decimator using two Nth-band
recursive �lters and an corrector �lter at the output sampling
rate.

�lter stage with transfer function H3(z) works at the out-
put sampling rate. For analysis purposes, this corresponds
to the case where the single-stage overall transfer function is
H(z) = H3(z

20)H2(z
5)H1(z) before decimation by N = 20.

Figure 6 illustrates how to construct the desired overall dec-
imator. H2(z) has been designed in such a way that H2(z

5)
provides for the overall �lter the desired stopband atten-
uation in bands [2�r=20 � 0:9�=20; 2�r=20 + 0:9�=20] for
r = 1; 2; 3; 5; 6; 7; 9; 10. The role of H1(z) is to provide the
desired attenuation in the bands for r = 4 and r = 8. For
H2(z

5)H1(z) the stopband starts at ! = 1:1�=20, instead
of ! = �=20. Futhermore, there are peaks in the stopband
region. The desired overall response is obtained by using
H3(z) at the �lter output in such a way that H2(z

20) pro-



vides the desired attenuation in the band [�=20; 1:1�=20]
and attenuates the undesired peaks in the stopband region.

When practically implementing H1(z) and H2(z), a com-
mutative structure is very useful [11]. In this case, there is
no need to implement the extra delays in the branch �lters
and An(z)'s, instead of An(z

N)'s, are implemented. In our
example case, the �rst four allpass �lters of H1(z) are �rst-
order sections, whereas the last one is just a direct line. For
H2(z), the �rst allpass section is a cascade of three �rst-order
allpass sections, whereas the last three �lters are cascades of
two �rst-order sections. H3(z) is simply a parallel connection
of �rst-order and second-order allpass �lters.

6.2 Design of Nyquist Filters

As we have de�ned them, IIR Nth-band �lters have a 3-
dB attenuation at �=N , whereas FIR Nth-band �lters have
a 6-dB attenuation at this frequency. Comparing Eqs. (4)
and (17), we can see that the squared magnitude response
of an IIR Nth-band �lter satis�es the same property as
the frequency response of the zero-phase FIR Nth-band �l-
ter. This means that the cascade of an Nth-band IIR �l-
ter, H(z), and the anti-causal IIR �lter H(z�1) satis�es the
frequency-domain condition of an FIR Nth-band �lter and,
consequently, satis�es the zero-crossing (zero ISI) property

of Nyquist �lters. H(z) andH(z�1) are a matched �lter pair,
i.e., the impulse responses are mirror images of each other.
The anti-causal �lter H(z�1) can in some cases be imple-
mented by �ltering the data in the reverse direction with
H(z). For other cases, there are approximative methods to
implement it [9].

In the case of N = 2, halfband IIR �lters can be designed
as a special case of elliptic �lters (or other classical lowpass
IIR �lter types). This means that it is possible to satisfy the
zero intersymbol interference property using an elliptic half-
band �lter together with the corresponding anticausal mirror
image impulse response for pulse shaping. For power-of-two
oversampling ratios, it is possible to design half-Nyquist �l-
ters using a cascade of halfband �lters. For other values of
N , Nth-band IIR �lters cannot be used as Nyquist �lters as
such, since the don't-care bands between the stopbands can-
not be tolerated. However, for even values of N , solutions
where the �rst interpolator stage (last decimator stage) is a
halfband IIR �lter are feasible, since a continuous stopband
from !s to � can be achieved in this case.

We can also notice that in the case of approximatively
linear-phase IIR Nyquist �lters, both the transmitter and
receiver half-Nyquist �lters, as well as the cascade satisfy
the time-domain zero-crossing property. This is because in
this case one of the polyphase branches of each interpola-
tor/decimator stage is a pure delay. It can also be shown
that in the case of N = 2, the approximatively linear-phase
IIR half-Nyquist �lters are the only �lter class having this
property [21].

Recent experience has revealed one drawback in using IIR
Nth-band �lters for transmitter pulse shaping: the peak en-
velope value of the modulated signal is higher than when us-
ing square-root raised-cosine �lters. Separable FIR Nyquist
�lters with nonlinearphase �lter for T (z) su�er from the same
problem, which is rather critical in applications where the
transmitter power consumption should be minimized. On
the other hand, for other applications IIR Nyquist �lters of-
fer a solution with low implementation complexity.

As an example we consider the design of a nonseparable
Nyquist �lter with N = 8 and � = 0:8. Such a �lter can
be implemented as H(z) = H1(z

4)H2(z
2)H3(z), where the

Hk(z) are of the form Hk(z) = [zNk + Ak(z
2)]=2: A 40-dB

attenuation is achieved by N1 = 7, N2 = 3, N3 = 1, and
Ak(z)'s of orders 4, 2, and 1 for k = 1; 2; 3, respectively.
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