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ABSTRACT
A method of incorporating implementation aspects in the
algorithm-level design of nonlinear filters is proposed. As
a case study, the trade-off between the visual properties and
the complexity of soft morphological filters is studied us-
ing training-based optimization methods. Specifically, it is
shown that the use of the complexity constraints can provide
the filter designer valuable information on to what extent it is
reasonable to increase the complexity of the filter structure.

1 INTRODUCTION

Nonlinear filter optimization techniques typically pay no at-
tention to the implementation stage but concentrate only on
noise attenuation and detail preservation capabilities. The
goal of this paper is to present a novel method of also incor-
porating different resources of the implementation architec-
ture, like arithmetic operations and their control, data stor-
age, external communication, already in the algorithm-level
design of the nonlinear filters. This can provide a compro-
mise between the visual properties (the noise removal and de-
tail preservation capabilities) and the complexity of nonlinear
filters. As a case study, soft morphological filters are used.

A basic fact is that a complex filter can usually remove
noise and preserve details more effectively than a small and
simple filter. On the other hand, the more complex the system
is, the heavier its implementation typically is for practical sit-
uations. Thus, a key question is whether the improvement in
the quality of the results is large enough to justify the increase
in the complexity.

In this paper, we study the trade-off between the noise re-
moval and detail preservation ability of the filter on one hand
and the ease of implementation of the filter on the other hand
utilizing training-based optimization of the soft morphologi-
cal filters [1]. In our study we use a simple complexity mea-
sure, but the proposed method generalizes to any numerical
complexity measure.

2 SOFT MORPHOLOGICAL FILTERS

Soft morphological filters [2] form a class of stack filters and
were introduced to improve the behavior of standard flat mor-
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phological filters in noisy conditions. They have many desir-
able properties, e.g., detail preservation [3]. The two basic
soft morphological operations are soft erosion and soft dila-
tion. Based on these operations, two compound operations,
soft opening and soft closing, can be defined in the usual way.

The detail preservation ability, as well as the noise removal
ability, of a soft morphological filter depend on the size and
shape of its structuring set and on the value of its order index.

Definition 1 The structuring system [B;A; r] consists of
three parameters, finite sets A and B;A � B 6= ;, in Zm

(where m 2 Z+ denotes the dimensionality of the signal
space) and an integer r satisfying 1 � r � maxf1; jB nAjg.
The set B is called the structuring set, A its (hard) center,
B n A its (soft) boundary, and r the order index of its cen-
ter or the repetition parameter.

The translated set Tx, where the set T is translated by x,
x 2 Zm, is defined by Tx = fx + t : t 2 Tg: A multiset is
a collection of objects, where the repetition of objects is al-
lowed. For example, f1; 1; 1; 2; 3; 3g = f3}1; 2; 2}3g is a
multiset.

Soft morphological operations transform a signal f :Zm !

R to another signal by the following rules.

Definition 2 Soft erosion (soft dilation) of f by the struc-
turing system [B;A; r] is denoted by f 	 [B;A; r] (f �

[B;A; r]), where f 	 [B;A; r](t) (f � [B;A; r](t)) is the
rth smallest (largest) value of the multiset fr}f(a) : a 2

Atg [ ff(b) : b 2 (B nA)tg.

If r = 1 there is no difference (in regard to the result of the
filtering) whether an element belongs to the hard center or to
the soft boundary. Thus, for simplicity, we can suppose in the
following that if r = 1 then all elements in the structuring set
belong to the soft boundary, that is, A = ;.

The above assumption, together with the restrictions for
the values of the order index in Definition 1, guarantees that
each structuring system defines a unique soft morphological
erosion (dilation). Thus, we can in this paper speak about the
complexity of the filter (i.e., soft erosion/dilation) although, to
be exact, we should speak about the complexity of the struc-
turing system.



3 COMPLEXITY MEASURE

Any soft morphological filter is completely determined by its
structuring system. When considering the complexity of the
structuring system, we can see that the most important point
is, of course, the size of the structuring set. The meaning of
the order index is usually relative to the size of the structur-
ing set. However, when r has one of the extreme values, e.g.,
r = 1 or r = jB n Aj, the implementation complexity of the
filter may usually be highly reduced.

Moreover, the concrete implementation of the filter de-
pends highly on the “situation at hand”. That is, the same
filter can be implemented in many ways, depending on the
technology used and on what points (the size of the memory
needed, the speed of the filtering, etc.) are considered to be
important. Thus, there are also many reasonable interpreta-
tions of the complexity of the structuring system.

However, the proposed method suits any interpretation of
the complexity if one has a way to describe the interpretation
numerically. Thus, without any loss of generality, we will
consider in this case study the following simplified measure
for the complexity C of the 2-D structuring system:

C([B;A; r]) = jBj+ j(B nA)(0;1) n (B nA)(0;0)j;

where j � j is the cardinality of the set in question.
The motivation for this definition of the complexity mea-

sure is the following. It is known that in situations with small
and moderate amounts of one-sided impulsive noise, the size
of the hard center of a good structuring system is small. In
fact, usually in this kind of situation the size of the hard center
of the optimal structuring system is one [1]. Hence, the size
of the hard center has now only a minor (although not zero)
effect on the complexity of the filter. Thus, the key question
concerning the time complexity of the implemented filter is
the finding of the rth smallest (or largest) element from the
signal values inside the soft boundary. For this, there are sev-
eral methods.

For example, if the size of the soft boundary is small some
straightforward selection method (or even sorting method)
may be efficient. Then, the size of the structuring set is the
most important factor in the complexity. On the other hand,
if the size of the soft boundary is large it is often reasonable
to use, e.g., some histogram-based method, in which case one
has the already processed signal samples in the previous win-
dow position and only few new samples are entering the win-
dow. Thus, more weight should be given to those elements
that are “new” in each single point t. If the usual raster scan
(i.e., the filter advances from left to right on every row pro-
ceeding from top to bottom) is used this means that more
weight should be given to those elements that are not com-
mon to (B n A)t+(0;1) and (B n A)t. As a compromise, the
presented complexity measure is used.

Example 1 Let us suppose A = f(0; 0)g, B1 = f(�2; 0);

(�1; 0); (0; 0); (1; 0); (2; 0)g, B2 = f(�1; 0); (0; 1); (0; 0);

(0;�1); (1; 0)g, and 2 � r � 4. Then

C([B1; A; r]) = jB1j+ jf(0; 0); (3; 0)gj = 7

and

C([B2; A; r]) = jB2j+ jf(0; 0); (1; 1); (1;�1); (2; 0)gj = 9:

Example 2 Clearly, the complexity of the identity filter is
two. Moreover, the assumptions and restrictions for the or-
der index r imply that always C([B;A; r]) � 2.

One should also remember that the complexity used here is
just a simple example of one possible definition of the com-
plexity of the structuring system, and the purpose is not to
produce any standard. Moreover, the definition of the com-
plexity of the structuring system is now made having the test
case of the paper in mind.

4 OPTIMIZATION

Although there are no analytical criteria for deciding which
soft morphological operation (and with which parameters) is
the best for some situation, a suitable operation and its param-
eters can be found using supervised learning methods, e.g.,
simulated annealing and genetic algorithms [1]. Of course,
some training set, for which the desired output is known, is
needed.

The optimization methods presented in [1] allow one to
handle the complexity of the structuring system in several
ways. First, it is possible to use the complexity as an error cri-
terion, perhaps together with some constraints such as at least
80 % of the original noise must be removed. However, this
generally leads to an ambiguous set of solutions from which
it is difficult to choose the best one in some other sense.

Another possibility (the one used in this paper) is to use
the complexity as a constraint, i.e., to search the optimal fil-
ter, e.g., under the MAE, provided that the complexity of the
filter is under a beforehand fixed level. A third possibility is
to make a new error criterion by simply combining, e.g., the
MAE and the complexity value. The easiest way to do this
is simply to multiply the MAE and the complexity value by
some weights and then to add these two results together. The
problem in this method is that it is not necessarily easy to se-
lect suitable weights for the parts.

5 TEST CASE

The experimental tests in this paper are based on the follow-
ing 2-D test case. The training image is a 128 � 128 part of
the 512 � 512 gray-level image “Harbour”, with (60; 190)

as the coordinates of the upper left corner. The comparison
images are the entire image “Harbour” and the 512 � 512

gray-level image “Lena”. For test purposes, all images were
corrupted by positive impulsive noise with noise probabili-
ties 0:01; 0:05; 0:1, and 0:2. Here, a positive impulse means
the largest possible pixel value. In each case the optimal soft
erosions with complexity less than or equal to 2; 3; 4; : : : ; 20

were found. The error criterion used in the experiments re-
ported in this paper was the MAE. The same experiments
were also carried out using the MSE as the criterion. The re-
sults were similar to those presented here, but to save space
they are omitted.
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Figure 1: The MAEs between the original training image and the filtered noisy training images as a function of the maximal
complexity of the structuring system, solid: the total MAE, dashed: the MAE caused by the impulses not removed, dotted: the
MAE caused by the filtering of the noncorrupted pixels.

6 EXPERIMENTAL RESULTS

Figure 1 shows some results of our experiments, in which we
studied the performance and the properties of the soft mor-
phological filters optimal under the complexity constraints in
our test cases. Because the identity filter is now the only rea-
sonable filter whose complexity is two the leftmost error val-
ues also express the original error between the noisy and the
noise-free images.

The error between the filtered and the noise-free images
originates in three sources, namely, in the error caused by the
impulses not removed, in the error caused by the removed
impulses, and in the error caused by the filtering of the non-
corrupted pixels. Of course, the more impulses are removed,
the more the error caused by the removed impulses increases.
The relation between the other two noise sources, on the other
hand, is the key concept in the selection of applicable filters.

Let us first consider our test case with the noise probabil-
ity 0:01. In this case the amount of the impulses, and thus the
possible improvement in the original error, is so small that the
error caused by the filtering of the noncorrupted pixels easily
becomes larger than the error between the orinal noisy and
noise-free images. Hence, for example, the identity filter is
the optimal soft erosion when the maximal complexity of the
structuring system is less than or equal to five.

In fact, the complexity of the simplest soft erosion [B;A; r]

that results in a decreased total error is now six. Moreover, the
significant filter parameters are: A = f(0; 0)g, jB n Aj = 3,
and r = 3. Unfortunately, also this soft erosion is too power-
ful in the sense that it alters too many pixels that are not cor-
rupted. Thus, the error caused by the filtering of the noncor-
rupted pixels is in this case quite large, as can be seen, e.g.,
from the dotted curve in the leftmost upper image in Figure 1.
The impulse removal properties of this soft erosion, on the
other hand, are excellent. Thus, the filtering problem with the
noise probability 0:01, as with other low noise probabilities,

is not how to remove the impulses with efficiency but how at
the same time not to change too many pixels that are not cor-
rupted.

When the maximal complexity of the soft erosion in-
creases, the optimal soft erosion changes in such a way that
the conditionsA = f(0; 0)g and r = jB nAj also hold for the
new structuring system. Thus, changes may happen only in
the size and the shape of the soft boundaryB nA. In practice,
however, the size of the soft boundary never decreases when
the complexity of the soft erosion increases. In contrast, the
size of B nA increases steadily together with the complexity
of the soft erosion.

The effect of this increase is, naturally, that the number of
the changes in the pixel values during the filtering process de-
creases. Thus, also the number of the falsely altered pixels
decreases. At the same time also less impulses are removed,
but the amount of such impulses is, however, so small that the
total error decreases steadily. Of course, there is some limit
after which the error caused by the remaining impulses starts
to dominate, and the total error starts to increase. As can be
seen from the leftmost upper image in Figure 1, this limit is
probably already encountered.

Let us next consider the test cases with larger noise prob-
abilities than 0:01. From the total MAE between the original
training image and the filtered noisy training images (solid
curves in Figure 1) it can be noticed that when the possible
maximal complexity increases the error decreases steadily.
For small complexity values the decrease is very rapid but
when the complexity is larger than 5, the decrease becomes
slower, and if the complexity is larger than 10, the decrease
in the error is no longer significant compared to the increase
in the complexity.

The dashed curves in Figure 1 show that all optimal filters,
excluding the identity filter, remove impulses satisfactorily.
Thus, a good impulse removal ability can already be obtained
by soft morphological filters with low complexity.
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Figure 2: The MAEs between the original and the filtered (noisy) images, as a function of the maximal complexity of the struc-
turing system, solid: the training image, dashed: “Harbour”, dotted: “Lena”.

When the complexity of the soft erosion is very small
(three of four) the filtering of the noncorrupted pixels causes
quite a lot of error (cf. the dotted curves in Figure 1). The rea-
son for this is that the filters in question (the standard erosions
of size two or three and the three-point median) cause heavy
blurring. In these cases also most of the total error derives its
origin from the filtering of the noncorrupted pixels.

With smallish complexities (from five to ten) Figure 1
illustrates quite well the struggle between the impulse re-
moval (error caused by the remaining impulses) and the detail
preservation (error caused by the lost details) abilities of the
optimal filters. With larger complexities the optimal soft ero-
sions are already able to remove almost all of the impulses,
and the decrease in the total error is now based solely on the
fact that a more complex structuring system is able to handle
those pixels better that are not corrupted.

Figure 2 illustrates the performance of the found optimal
soft erosions in the comparison images. As can be seen, in
all cases the results are similar to those in the training image.
Hence, the conclusions concerning the effect of the complex-
ity of the structuring system are not limited to the training im-
age, but they hold in other images as well. The lower over-
all level of the errors is now explained by the fact that the
comparison images have fewer details than the training im-
age, and thus the noise removal in them is easier.
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Figure 3: The ratios r=jBnAj of the found optimal structuring
systems correponding to the impulse probabilities0:01 (dash-
dotted), 0:05 (solid), 0:1 (dotted), and 0:2 (dashed).

Figure 3 gives another view on the properties of the found
optimal soft erosions. As can be seen, excluding the small
complexities, the ratio r=jB n Aj is quite invariant with re-
spect to the maximal complexity of the optimal structuring
system. That is, the ratio r=jBnAj of the optimal soft erosion
has about the same value regardless of the desired maximal
complexity of the structuring system. This, once again, con-
firms the crucial role of this ratio in the selection of applicable
soft morphological filters (cf. [1]).

7 CONCLUDING REMARKS

In this paper, we introduced a general and simple method of
integrating some implementation aspects already in the non-
linear filter parameter optimization. Concerning the soft mor-
phological filters and the complexity criterion used, the fol-
lowing rules of thumb can be used when applicable filters are
sought. First, a good soft morphological filter should be com-
plex enough not to cause heavy blurring. Second, if the filter
is already complex enough to remove almost all of the noise,
a more complex structuring system is hardly ever reasonable,
except with very low noise probabilities. Between these bor-
derlines lies the set of the practical filters. The exact size of
the borders depends, of course, on the application at hand.

References

[1] Koivisto, P., Huttunen, H., and Kuosmanen, P., “Train-
ing-based optimization of soft morphological filters,”
Journal of Electronic Imaging, vol. 5, June 1996, pp.
300–322.

[2] Koskinen, L., and Astola, J., “Soft morphological fil-
ters: A robust morphological filtering method,” Journal
of Electronic Imaging, vol. 3, January 1994, pp. 60–70.

[3] Kuosmanen, P., and Astola, J., “Soft morphological fil-
tering,” Journal of Mathematical Imaging and Vision,
vol. 5, September 1995, pp. 231–262.


