
ABSTRACT
In this paper, a new form of clustering method is presented
where a priori knowledge of the reliability of different sam-
ples is used. This knowledge can be inserted into the cluster-
finding based computation of the estimator output in the
form of sample weights. This kind of method is needed in
time-delay based angle of arrival estimation with nonuni-
form linear sensor arrays.

1   INTRODUCTION
Robust filtering is a largely investigated field [5, 4, 1]. Espe-
cially, robust methods are used in removing an impulsive
type of noise, paying at the same time attention to detail
preservation, especially edges. An edge can be modeled as a
case where the majority of the window samples can be
thought of as pseudo outliers [2]. Proposed methods for this
situation are based on the idea of finding a cluster of sam-
ples with the largest sample density [3]. In this paper, we
introduce a filter for finding an optimal sample cluster so
that the knowledge of the a priori reliability of the samples
can also be used. This knowledge can be presented in the
form of sample weights. The filter presented in this paper
finds a natural application in time-delay based angle of
arrival estimation with nonuniform linear sensor arrays.

2   CLUSTER FILTER
Let us assume that we are acquiring data using different sen-
sors and we have received samples

, , (1)

where  is the number of samples from sensor  and  is

the number of sensors. Here it is assumed that we have some
a priori information on the accuracy of each sensor. The goal
is to find the value which represents the samples as well as
possible. In this case that means that we are looking for a
cluster of samples, i.e. a value  maximizing the number of

samples  which are at most  apart from  is searched.

Each sample is weighted by a weight  which is assigned

to each sensor based on the a priori information about the
accuracy of the sensors. Then we maximize the sum of
weights of the samples which are at most  apart from
instead of the number of samples. Based on that, the output
of the cluster filter with  as input is defined as follows:

, (2)

where  is a windowing function representing the inter-

val  in the simplest case.

Procedure to calculate the output of the cluster filter

1. Sort the samples .

2. Go through the sorted samples. At each sample , find

all samples falling within the distance  from sample .

Compute the sum of the weights for this sample set .

3. Find the set  with the maximum weight sum.

4. The output of the cluster filter is the weighted mean of
this sample set.

3   ANALYSIS OF THE CLUSTER FILTER
To analyse the distributional robustness of the cluster filter,
we use the influence function as a tool. The influence func-
tion measures the change in the output of a filter in case of
slight deviation from the assumed distribution, for instance,
in the presence of an outlier. The influence function for a fil-
ter is defined as

, (3)

whereT is the functional form of the filter in question,F is
the assumed distribution of the input samples, and  is dis-

tribution of a single sample at pointx [4].
In order to write the cluster filter in the form of a functional,
we rewrite Equation (2) as follows

, (4)

so that

(5)
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. (6)

The notation  stands for the distribution for the sam-

ples from sensork. The final row in Equation (5) is, in fact,
the functional form of an M-estimator, whose influence
function is [4]

, (7)

where  is the derivative of . So, we see that the
cluster filter inherits its robustness properties from the well
studied class of M-estimators.

4   APPLICATION
The need for this modification of clustering stems from a
specific application. Assume a case where the angle of
arrival of a signal is estimated using a linear array of sensors
at a varying distance from each other (nonuniform linear
array). The angle of arrival is computed using estimated
time delays between signals received at different sensors [7].
In an ideal case, a single measure of time delay is sufficient
to determine the angle of arrival, but in practice, several time
delay estimates are needed to compensate disturbances.
Time delay estimation produces outliers, for example, in
case of sensor malfunctioning or in the presence of correlat-
ing noise at different sensors. Robust methods for time-
delay based anegle-of-arrival estimation have been
addressed in [8].The nonequal distances of the sensors gives
different reliability status to the time delay estimates. This
creates an environment where weighting of the time delay
estimates is a natural choice. More specifically, the desired
output gives us a reliable estimate of time delay normalized
with respect to the sensor distances.

5   SIMULATION RESULTS
This section presents simulation results to demonstrate

the performance of the proposed method. The simulations
consisted of 10000 realisations of a situation with a small
sensor array of five omnidirectional sensors, a signal source
at a random position. Independent Gaussian noise was
added to the signals received by the sensors to model meas-
urement and background noise. The possible malfunction-
ing of the sensors was also modelled.

The array used in the simulations consisted of five sen-
sors located at a line with distances 8l, 18l, 30l and 40l from
the first sensor wherel is the velocity of propagation times
the sampling interval. The source signal used was a sum of 5
sinusoids with random frequencies between 0.003π and
0.07π with respect to the sampling frequency 2π and with a
common amplitude. The source signal was set to propagate
as a plane wave from a random direction. For each of the
10000 realisations, the direction of propagation was ran-
domly selected such that  was chosen from a uniform dis-
tribution on  and  from a uniform distribution on

. The polar coordinate system used is shown in Fig-

ure 1.
The signals received by the sensors were the sum of the

source signal delayed according to their respective direction
of propagation and white independent Gaussian noise with
variance 0.1vs where vs was the power of the test signal.
Malfunctions in the sensors were simulated by setting the
signal received by one randomly selected sensor to white
independent Gaussian noise with variance 0.1vs.

All the 10 possible time delays between the sensor sig-
nals were estimated using polarity coincidence correlation
[6]. The length of each realisation was 5000 samples. The
time delay estimates were normalized by multiplying them
with the product of the velocity of propagation and the sam-
pling interval and dividing them with the corresponding dis-
tance between the sensors. For each realisation,
representative values for normalized time delay estimates
were formed using the mean of time delay estimates, the
median of time delay estimates, and the cluster filter. The
range for cluster filter was set to 0.3 and the distance
between the corresponding sensor pair was used as a weight
of the time delay estimate.

The error criterion used was the difference between the
estimated and true normalized time delays. The cumulative
distribution functions of the difference values estimated
from the 10000 realisations for the different methods are
shown in Figure 2. The dotted line represents the mean, the
dashed line represents the median, and the solid line repre-
sents the cluster filter. As seen from the figure, the probabil-
ity to have small error is the largest for the cluster filter.

6   CONCLUSION
In this paper, a new filter, cluster filter, for finding sample
clusters was presented. The filter suits, for instance, time-
delay based angle of arrival estimation with nonuniform lin-
ear sensor arrays, where outliers may well occur nonsym-
metrically. The robustness study of the cluster filter revealed
its connection to M-estimators.
The behavior of the cluster filter was simulated in the above
mentioned application. For comparison, the mean and the
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Figure 1.The polar coordinate system used for angle of arrival
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median filters were applied, too. In this application, the clus-
ter filter gave better results.

REFERENCES
[1] J. Astola, P. Kuosmanen, Fundamentals of Nonlinear

Digital Filtering, New York, CRC Press LLC 1997.
[2] C. Stewart, “Bias in Robust Estimation Caused by Dis-

continuities and Multiple Structures,“ IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol 19,
no. 8, pp. 818-833, 1997.

[3] H. Longbotham, D. Eberly, “The WMMR Filters: A
Class of Robust Edge Enhancers,“IEEE Transactions on
Signal Processing, vol 41, no. 4, pp. 1680-1685, 1993.

[4] F. Hampel, Robust Statistics, New York, Wiley, 1986.

[5] P. Huber, Robust Statistics, New York, Wiley, 1981.
[6] R. Cusani, "Performance of fast time delay estimators,"

IEEE Trans. Acoust., Speech, Signal Processing, vol. 37,
no 5, pp. 757-759, May 1989.

[7] J. Yli-Hietanen, K. Kalliojärvi, J. Astola, "Low-com-
plexity angle of arrival estimation of wideband signals
using small arrays," inProc. 8th IEEE Signal Processing
Workshop on Statistical Signal and Array Processing,
Corfu, Greece, June 1996, pp. 109-112.

[8] J. Yli-Hietanen, K. Kalliojärvi, J. Astola, "Robust Time-
Delay Based Angle of Arrival Estimation," inProc. 1996
IEEE Nordic Signal Processing Symposium, Espoo, Fin-
land, September 1996, pp. 219-222.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.Estimated cumulative distributions of errors. Solid line: Cluster filter, dashed line: median, dotted line: mean


