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ABSTRACT

This paper considers the design of low complexity digital
�lters. Complexity is reduced by constraining the �lters
to have integer coe�cients, which can be e�ciently imple-
mented using primitive operator directed graphs (PODG).
Genetic Algorithms (GAs) are used in conjunction with a
heuristic graph design algorithm, to provide a joint opti-
mization of �lter performance and complexity. The proposed
technique is used to design 1D �lters, 2D �lters and perfect
reconstruction �lter banks.

1 INTRODUCTION

Digital �lters are increasingly found in all areas of digital
signal processing (DSP). For practical systems, it is often
important that the digital �lters should have low implemen-
tation cost and low power consumption, while operating at
high data rates.

To achieve this goal, the �lter coe�cients are often con-
strained to be integers, with single extra (possibly 
oating
point) multiplier on the �lter output. The �lter requires an
integer multiplier for each coe�cient. These integer multi-
pliers can be e�ciently implemented using a combination of
additions, subtractions and power of two shifts, collectively
referred to as primitive operators.

Various implementation strategies exist. The �rst is a bi-
nary implementation, in which each multiplier is expressed
as a simple sum of power-of-two terms. However many values
e.g. 15 can be more e�ciently implemented using a combi-
nation of both additions and subtractions. Thus each mul-
tiplier can be implemented as a sum of signed power-of-two
(SPT) terms. The third method is to implement the com-
plete multiplier bank using a directed graph structure [1].
This method allows signi�cant savings as a result of the reuse
of intermediate partial sums. Figure 2 shows an example of
a primitive operator directed graph for a 1D �lter.

The resulting design problem thus becomes that of choos-
ing a set of �lter coe�cients and a corresponding implemen-
tation which o�ers an e�ective compromise between imple-
mentation complexity and performance. There are two main
strategies to achieve this.

The �rst strategy is to �rst design an appropriate integer
coe�cient �lter, and then to �nd an e�cient implementa-
tion. The integer coe�cient �lter can be designed either
by rounding the coe�cients from an e�ective 
oating point
design, or by employing an optimization technique such as
linear programming. The optimal SPT representation is eas-
ily found using the canonic signed digit (CSD) algorithm [2].

However, the optimal graph design is a more di�cult prob-
lem, although various heuristic methods exist [1, 3], which
give a close to optimal implementation. The problem with
this approach, is that it achieves compromise which tends to
favor higher performance and higher complexity solutions.
The reason for this is due to the choice of �lter being made
without reference to its complexity.

An alternative method is to use a complexity constrained
approach, where a speci�c implementation is selected with
an appropriate complexity constraint. The space of possible
parameters is then searched in order to �nd a �lter with op-
timum performance given the constraints. For example, the
�lter coe�cients can be constrained to comprise a sum of a
�xed number (often 2) of SPT terms. The values of each of
these SPT terms is then optimized [4, 5, 6, 7, 8, 9]. A relax-
ation of this constraint was used in [10, 11], where only the
total number of SPT terms is constrained and their distribu-
tion among the coe�cients is varied. Although this approach
has been found to work well with an SPT implementation,
it is not well suited for use with directed graphs, due to the
epistatic nature of the problem. A small change in the graph
will typically lead to a large change in �lter characteristics.
This makes it very di�cult to �nd an optimal solution.

2 PROPOSED METHOD

In this paper, we propose a multi-objective optimization ap-
proach. The optimization problem is stated as that of �nding
a set of integer coe�cients which provides an e�ective com-
promise between �lter order, complexity and performance.
Complexity of any candidate solution is estimated by by
employing an appropriate design algorithm such as CSD [2]
or a directed graph [3]. Although these design algorithms
represent an increase of complexity for evaluating candidate
solutions, this increase is not signi�cant compared to the
complexity of evaluating the frequency response.

Since the parameter space is de�ned in terms of the inte-
ger coe�cients, it is easy to move between �lters with simi-
lar performance, thus aiding the optimization. However, the
complexity is still highly epistatic. The optimization prob-
lem is easily seen to be both discrete, multi-objective and
multi-modal, and thus requires a sophisticated optimization
tool. In this paper we have employed a Genetic Algorithm.
Genetic algorithms [12] are chosen because they are known to
be e�ective for discrete, multi-objective, multi-modal prob-
lems. In the proposed GA, individual solutions are repre-
sented as the set of corresponding integer �lter coe�cients,
and the mutation and crossover operators are appropriately
modi�ed. An additional mutation operator is also intro-



Number of adders

Gain
(dB)

   0    5   10   15   20   25   30   35   40   45
 −55

 −50

 −45

 −40

 −35

 −30

 −25

 −20

 −15

 −10

  −5

Order 2

Order 4

Order 6

Order 8
Order 10

Order 12

Order 14

Order 16

Order 18
Order 20

Order 22

Order 24
Order 26

Order 28

Figure 1: Tradeo�s between complexity, order and attenua-
tion for an example low pass speci�cation.

duced, which allows all of the coe�cients to be scaled and
rounded. This allows the algorithm to e�ectively explore sig-
ni�cantly di�erent regions of the search space, by jumping
to �lters with similar performance, but signi�cantly di�er-
ent coe�cients. The GA produces a pareto-optimal or non
dominated set (NDS) of solutions which represent the various
performance/complexity/�lter-order compromises. Thus the
net result of the process is not one solution, but a set of
designs representing di�ering trade-o�s between complexity
and performance.

3 EXAMPLE DESIGNS

3.1 1D Low-Pass Filters

In order to demonstrate the e�ectiveness of this approach
we shall consider an example minimax design problem. The
�lter is speci�ed as being a linear-phase, low-pass, 1D-FIR
�lter with a normalized transition band between 0.15 and
0.25. This example has been chosen to allow comparison
with previous work [4, 5, 6].

Figure 1 shows the non dominated set (NDS) obtained for
this design. This �gure consists of a separate non-increasing
curve for each di�erent �lter order. Realizable �lters lie on
and above/right of the curves, while an optimal compromise
would be towards the lower left. Ignoring complexity, we see
that optimal integer coe�cient �lters lie at the lower right
hand end of these curves. It is now clear that these are
unlikely to be as useful as other slightly lower performance
�lters, which o�er a signi�cant reduction in complexity. Al-
ternatively, for a given complexity, signi�cant performance
can often be made by using a higher order �lter. Finally, we
see that there is an approximately linear trade-o� between
complexity and attenuation (measured in dBs). The gradient
of this trade-o� varies according to the design speci�cations.

For comparison, we shall consider the 24th order exam-
ple of [5], using 35 adders, which has a an attenuation of
-43.8 dB. From �gure 1, it can be seen that a 24th order
�lter with slightly improved attenuation (-43.92dB) can be
achieved with only 26 adders. Figure 2 shows the graph
based structure used to implement this �lter, which consists
of 6 adders to generate the values of 5, 7, 71, 251, 43 and
377. These values are then scaled by signed powers-of-two

x 1

*1

*4
+ 5

*−1

*8
+ 7

1

5

7

*1

*64
+ 71

*−1

*256
+ 251

1

5

7

71

251

*1

*−4
+ 43

*−1

*64
+ 377

2x1

8x1 +

−16x1 +
−2x7 +

4x5 +
43 +

−16x5 +
−71 +

16x7 +
377 +

2x251 +
377 +

16x7 +
−71 +

−16x5 +

43 +
4x5 +

−2x7 +
−16x1 +

8x1 +
2x1 +

Figure 2: Graph structure for implementation of 24th order
�lter with 26 adders.

and summed in the shift register. Note that since 4 of the
coe�cients are zero, only 20 instead of 24 adders are used in
the shift register. The rectangular boxes represent possible
locations for pipelining registers.

From �gure 1, we can see that another 24th order �lter
with 34 adders and an attenuation of -45.45 dB can be de-
signed. Note that this is very close to the optimal (24th
order) 
oating point design (obtained using the Parks and
McClellan algorithm) which has an attenuation of -46 dB.
If we relax the constraint on the �lter order, we can de-
sign a 28th order �lter with 35 adders and an attenuation of
-52.26 dB. Thus, for the same complexity we can achieve an
improvement of 8.4 dB over the SPT design of [5].

Note that the proposed method does not restrict our con-
sideration to designs using directed graphs. By replacing the
graph design algorithm with a CSD algorithm, and repeating
the experimentation, we can gain a similar NDS for designs
using CSD. Figure 3 shows a comparison of the two methods,
from which it can be seen that for more complex �lters, the
directed graph method yields signi�cantly better results.

3.2 1D Band-Pass Filters

To demonstrate the 
exibility of this approach, a linear-
phase band-pass �lter, with transition bands 0:15�0:25 and
0:35 � 0:45, has been designed. Figure 4 shows the result-
ing NDS. A 28th order �lter with an attenuation of -50.96
dB can be designed with 31 adders. To design a compara-
ble (complexity) �lter with 2 SPT terms per coe�cient (as
in [6]) we must consider a maximum of 20th order1, which
gives an attenuation of about -36 dB (from [6]). Note that
even an optimal 
oating point 20th order �lter only achieves
-39dB.

3.3 2D Low-pass Filters

The same method can be used to design 2D �lters. Fig-
ure 5 shows results for a 2-D circularly symmetric, low-pass
�lter, with an annular transition band between 0.15 and

1A 20th order linear phase �lter requires up to 20 adders in the

shift register and 11 coe�cients with up to one adder each giving

a maximum of 31 adders
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0.35. These results can be compared to previous work of
[7, 8, 9, 10, 11], and are seen to exhibit improved complexity
and/or performance. For example, in [10], a 53 adder, 7x7
�lter with a maximum ripple of -28.8dB was designed. Fig-
ure 5 shows that similar performance can be achieved with
only 49 adders. The improvement obtained by using larger
�lters becomes less signi�cant in two dimensions, since an
increase in size/�lter order implies a much larger increase in
complexity, due to the larger 2D shift register structure.

3.4 Perfect Reconstruction Filter Banks

As a �nal example, we shall show how these techniques can
be used to design linear phase perfect reconstruction �lter
banks. Figure 6 shows the typical structure for a 2-band
�lter bank which is commonly used to build sub-band and
wavelet transforms. Although the proposed method could be
used to design the individual �lters directly, it is in practice
very di�cult to obtain perfect reconstruction (see [13]). This
motivates the use of a lattice architecture. Various lattice
architectures exist, including those of [14, 15, 16, 17]. These
o�er a convenient representation which is both e�cient and
ensures perfect reconstruction for arbitrary parameters.
In this paper we will use a design technique similar to

that proposed in [18], which is based on the use of a vari-
able transformation in conjunction with the lattice of [17].
Figure 8 shows a two stage lattice structure. Perfect recon-
struction is ensured for arbitrary functions p(z) and q(z).
Although the proposed method could be used to design p(z)
and q(z) directly, it is convenient to write these in terms of
a single transformation A(z) = �zp(z2) = 1

2
z�1q(z2) un-

der the constraint A(z) = �A(�z) (only odd terms). The
corresponding �lters can be written as:

H0(z) = 1 +
1

2
A(z)�

1

2
A
2
(z) G0(z) = 1 +A(z)

Linear phase is achieved by imposing a symmetry constraint
A(z) = A(z�1). Zeros at z = �1 (which encourage good
stop-band attenuation and regularity) can be achieved by
restricting A(1) = 1. Since the implementation of these �l-
ters is achieved using the lattice shown in �gure 8, it can
be seen that the analysis �lter bank requires 2 transforma-
tions p(z); q(z) and a further 2 adders. However, it should
be noted that these are at the down-sampled rate.
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Figure 4: Tradeo�s between complexity, order and attenua-
tion for an example band pass �lter speci�cation.

Figure 7 shows results achieved for the design of a pair of
�lters with a transition band between 0.2 and 0.3. These can
be compared with example 2 from [13] in which an approx-
imately perfect reconstruction pair using 88 adders was de-
signed with a maximum ripple of about -30dB for transition
band 0.l8 to 0.32. Figure 7 shows that perfect reconstruction
�lters can be designed with half the complexity (44 adders
per pair of samples), and a maximum ripple of -40dB for a
tighter transition band speci�cation. The results also show
improved performance compared to the previously presented
design of [18], in which a �lter pair using 48 adders (per pair
of samples) was designed with a maximum ripple of -35dB.

4 CONCLUSIONS

This paper has examined the design of low complexity FIR
�lters and �lter banks using a primitive operator directed
graph (PODG) representation. Genetic algorithms have
been used to perform a joint optimization of both �lter per-
formance and complexity.
The result is a 
exible design tool which, given a �lter

speci�cation, provides the user with a variety of solutions,
which o�er various compromises between performance, com-
plexity and �lter order. In this way the designer can easily
choose a �lter best suited for the given application. The
approach has been demonstrated for a variety of problems
including 1D �lters, 2D �lters and perfect reconstruction �l-
ter banks. Signi�cant improvements are obtained compared
to previous methods. These are due to a number of factors
including: t5he use of a directed graph implementation, a
truly multi-objective optimization strategy and the use of
heuristic implementation algorithms which help to maintain
a simpler search space. The proposed method is also well
suited to other problems such as IIR �lters, cascaded �lters
etc. The method is also not restricted to minimax designs,
but can be used with any other objective performance mea-
sure or measures.
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