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ABSTRACT

A product form of the polyphase �lter matrix with ad-

justable overall delay which allows perfect reconstruc-

tion, is given for orthogonal and biorthogonal modu-

lated �lter banks. The lifting scheme has been used,

yielding to simpler implementation and allowing for in-

place computations, i.e. the transform can be calculated

without allocating auxilary memory. The modulated �l-

ter bank system is decomposed into small subsystems

in a ladder module con�guration, which is pro�table for

many applications and easies the hardware implementa-

tion.

1 INTRODUCTION

For several years, the block transform and �lter bank

methods have been studied with a great interest and

have found a wide variety of signal processing appli-

cations. They became today powerful tools for many

applications, particularly for the signal or image coding

for transmission or storage. References [1{3] cover the

most signi�cant aspects of the �lter bank methods.

A typical M-channel maximally decimated �lter bank

is represented on Fig. 1. The analysis stage consists of

M �lters hk(n), 0 � k � M � 1 followed by M dec-

imators. The analysis stage splits the input x(n) into

M subband signals yk(n). In coding applications, the

signal resulting from each channel is quanti�ed, coded

and then transmitted. At the receiver end, the subband

signals are interpolated, �ltered by the synthesis �lters

fk(n) and combined. The overall system is generally

designed so that, in absence of quanti�cation and trans-

mission errors, the output is a Perfect Reconstruction

(PR) of the input signal is obtained bx(n) = x(n � r)

where r is the global input-output delay.

Filter banks as well as transform methods can be rep-

resented by Fig. 1. The di�erence between these two

families lies in the fact that the second uses �lters with

the same length L which is equal to the decimation fac-

tor M . So, adjacent blocks of the input signal are pro-

cessed independently. Filter bank methods use �lters

with generally larger length. Typically their length L is

equal to a multiple of the decimation factor M . These

�lters extend on several blocks of the input signal, and

thus take account of the correlation between adjacent

blocks and thus reduce the block artifacts inherent in

the transform methods. The �lter bank methods can

thus be seen as a generalization of transform ones.

To reduce implementation complexity and �lter de-

sign, Modulated Filter Banks (MFB) have been pro-

posed where the analysis and synthesis �lters are ob-

tained by modulation respectively, of two low-pass pro-

totype �lters h(n) and f(n):
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Figure 1: Maximally decimated �lter bank

The PR-MFB were studied in the orthogonal case, ini-

tially for L = 2M , then generalized for arbitrary value

of L. In references [4] and [5], the factorized form of

the polyphase matrix for L = 2mM was proposed inde-

pendently. The orthogonal MFB is characterized by the

fact that the analysis and synthesis �lters are obtained

by modulation of a same linear phase lowpass prototype

and the overall input-output r is equal to L� 1.

In [7] the conditions for perfect reconstruction for the

biorthogonal case are given, where the overall input out-

put delay r can be much lower than L � 1. A low

delay �lter bank is often desirable particularly for real

time applications. The two prototype �lters can also be

made equal and thus the �lter bank design is facilitated.

In [8, 9] similar condition was obtained for modulations

other than conventional cosine one.



In this paper, a product form of the polyphase matrix

with adjustable overall delay obtained from the lifting

scheme is given. It leads to a ladder implementation for

orthogonal and biorthogonal MFB. The lifting scheme

allows in-place computations and the implementation is

facilitated.

2 THE PERFECT RECONSTRUCTION

CONDITIONS

The PR reconstruction conditions for cosine MFB can

be written in matrix form

det(Gl(z)) = �z�s 0 � l � M

2
� 1 (1)

where

Gl(z) =
p
2M

� �Gl(z) GM�1�l(z)

GM+l(z) G2M�1�l(z)

�
(2)

and Gk(z) =
Pm�1

n=0 h(k + 2Mn)z�n; 0 � k � 2M �
1; are the 2M -polyphase components of the prototype

�lter h(n). The synthesis prototype �lter is given by

F (z) = (�1)sH(z). The exponent s, 0 � s � 2(m� 1),

controls the overall input output delay r, which is equal

to 2M(s+ 1)� 1 [7].

The MFB design is reduced to the prototype �lter

design satisfying (1). Notice that this PR conditions

implies that Gl(z) and GM+l(z) are relatively prime or

have a monomial common divisor because any polyno-

mial which divide them divides also the determinant.

This property is used in the next paragraph to obtain

the product form for the matrix Gl(z).

One can easily show that the polyphase matrix E(z)

of the analysis bank can be written in terms the type-IV

DCT modulation matrix and the matrix Gl(z), which

play a central role in this paper [5].

Without loss of generality, we deals here only with the

case of L = 2mM and therefore all polyphase compo-

nents of h(n) have the same order m� 1.

3 LIFTING FACTORIZATION

In the following, for considerations of causality, all poly-

nomials are polynomials of z�1. From the Euclidean al-

gorithm, for two arbitrary polynomials, a(z) and b(z),

one can write

�
a(z)

b(z)

�
=

�
q(z) 1

1 0

��
b(z)

r(z)

�
with

the order of r(z) less than the one of b(z) and where

q(z) = 0 if the order of b(z) is greater than that of a(z).

To take into considerations hardware implementations,

q(z) is imposed monomial and therefore the order of the

remainder r(z) can only constrained to be less than that

of a(z).

The division can be performed also in ascending

powers. In this case, with a monomial quotient

also, the "remainder" r(z) will not contain the con-

stant term and therefore one can write

�
a(z)

b(z)

�
=�

q(z) 1

1 0

��
1 0

0 z�1

��
b(z)

r(z)

�
with the order r(z)

less than that of a(z).

The division can be iterated with b(z) and r(z) with

either increasing or decreasing powers, and so on, until

the last remainder polynomial equal to zero is obtained.

This division process is assured to �nish with a null

remainder polynomial within a �nite number of steps

because at each step the order of r(z) is diminished. If

a(z) and b(z) are coprime or have a monomial factor, the

last obtained divisor polynomial is a constant K 6= 0.

Therefore, one obtains

�
a(z)

b(z)

�
=

N�1Y
i=0

Qi(z)

�
K

0

�
(3)

For arbitrary c(z) and d(z); if the a(z) and b(z) de-

�ne the �rst column of the polynomial matrix A(z) =�
a(z) c(z)

b(z) d(z)

�
with det(A(z)) = (�1)Nz�s, for some

appropriate value of s, one can easily �nd (see [6]) a

polynomial qN (z) such that

A(z) =

NY
i=0

Qi(z)

�
0 1=K

K 0

�
(4)

where QN(z) =

�
qN (z) 1

1 0

�
. The value s is the

time where the division was taken in ascending powers.

Let us resume the matrix given in (2) verifying (1).

We will see how it can be written as 4. For each l,

0 � l � M
2
� 1, denoting a(z) = �p2MGl(z) and

b(z) =
p
2MGM+l(z); both of order m � 1, one can

use the above described procedure of Euclidean division

either in increasing or decreasing powers of z�1. No-

tice that only half of coe�cients of the prototype h(n)

are used. One obtain the product (3) where the total

number of division steps N is equal to 2m � 1 and the

division in ascending powers was performed s times. So,

it only remains to determine the last quotient qN (z) to

write Gl(z) as the product form (4). This quotient is

linearly related to the prototype coe�cients and there-

fore is easily derived by identi�cation (equaling (4) to

Gl(z)). So det(Gl(z)) = �z�s: Notice that, as the four
polynomial entries of Gl(z) have the same order m� 1,

then qN (z) is only a constant polynomial.

Alternatively, as in our simulations, one can deter-

mine globally for all values of l, these last quotients by

minimization of the stopband error of the lowpass pro-

totype �lter
R
1

!s

��H(ej!)
��2 d!. As this stopband error is

quadratic with the prototype �lter coe�cients, its min-

imization leads to a linear equations easily resolved. To

re�ne the results (correct rounding errors, ...), one can

slightly disturb Gl(z) and GM+l(z); 0 � l � M
2
� 1 and



recompute GM+l(z) and G2M�1�l(z). An optimization

algorithm could be used for that purpose.

Finally, for each l,Gl(z) has been written as the prod-

uct (4) and therefore is factorized.

Inverting Gl(z) is trivial and thus the synthesis stage

can be derived without any di�culties.

4 IMPLEMENTATION COMPLEXITY AND

EXAMPLES

Only the implementation of the matrix Gl(z) is con-

sidered here since the modulation part is often the

same as in conventional cosine MFB. The analysis �l-

ter bank is implemented as M=2 two-channel ladder �l-

ter bank where each channel depends only on Gl(z) .

An example of implementation is given in Fig. 4 were

the following trick was used

�
p 1

1 0

��
q 1

1 0

�
=�

1 p

0 1

��
1 0

q 1

�
: Notice that, in (4), each quotient

matrix Qi(z) requires one addition and one multiplica-

tion per output sample. Therefore the implementation

of Gl(z), requires 2m adders and 2m+2 multipliers. Its

complexity is independent of the overall delay de�ned

by s. On can show that the ladder implementation of

the MFB use the minimal number of delays equal to

max(m � 1; s)M + 1. So, the implementation is mini-

mal for any value of s.

Some examples are given to illustrate the factoriza-

tion scheme. Fig. 2 and 3 shows impulse response and

magnitude response of prototype �lter for M = 8 and

L = 96.

In our simulations, the procedure described above

starts from a lowpass prototype �lter obtained from the

QCLS method [7] and the Matlab optimization pack-

age was used. In all cases, we have found the ladder

implementation designated by the QCLS method.

5 Conclusion

In this paper, a product form of the polyphase ma-

trix that leads to ladder implementation of biorthogonal

MFB with variable overall system in given. The anal-

ysis stage is implemented as M=2 two-channel ladder

structure followed by the modulation matrix transform.

The complexity is nearly the same as in the conventional

lattice-based one in the paraunitary case. The overall

system delay is controllable and can be imposed much

lesser than in the orthogonal case that can be useful in

real time applications.
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Figure 2: Prototype impulse responses for M=8, L=96

and two values of s (s = 3 : ' .' and s = 5 : ' ').
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Figure 3: Magnitude frequency responses of �lters in

Fig. 2.
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Figure 4: Ladder implementation of the Gl(z) block for

s = m� 1.


