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ABSTRACT

We propose a “best basis” selection method, to detect
abrupt changes in noisy multicomponent signals. The
basis, selected from a wavelet-packet library with an en-
ergetic criterion, separates the different frequency com-
ponents of the signal while keeping the best possible
time localization. From the obtained basis, we recon-
struct monocomponent signals in each band. The de-
tector 1s based on the adequation of this set of signals
with an abrupt change model. A performance analysis
is realized from synthetic signals. in terms of selected
basis and detection results.

1 INTRODUCTION

We present an abrupt change detection algorithm based
on the decomposition of signals on a basis obtained from
a wavelet-packet library. The families of considered sig-
nals are noisy multicomponent mixtures in which abrupt
frequency changes happen.

This work follows a detection method [2] that consists
of analyzing the time-frequency plane along the time
axis according to successive cuts at fixed scales. through
band-filtered signals obtained from the discrete wavelet
transform (DWT). While the DWT is particularly well
adapted to detection of transient signals (generally quick
events, well localized in the time-scale plane) it is, on
the other hand, more limited in a filter banks approach,
because the bandwidth depends on the scale and then
of the frequency. This problem does not exist any more
with wavelet-packets, from which it is possible to choose
a filter basis adapted to the signal.

Wickerhauser and Coifman have proposed an entropic
criterion [1] to select the best basis for signal compres-
sion. This criterion is defined as a measure of distance
between a signal and its decomposition, in terms of the
Shannon entropy, and provides the basis where informa-
tion is the mostly concentrated.

We search here the “best basis”™ in an other context -
the wanted basis must distribute the various frequency
components of the studied signal into different frequency
bands and, on the other hand, provide the best possible
time localization. One can represent the wavelet-packet
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decomposition as a binary tree, in which each node con-
tains a set of coefficients coming from the signal filtering
by a bandpass filter. The filter bandwidth depends on
the node level in the tree. The two constraints of fre-
quency separation and time localization become : to
select the nodes corresponding to filters with only one
frequency component, and with a maximal bandwidth
under this constraint. After this segmentation of the
time-frequency plane, we reconstruct a set of bandpass
filtered signals from the selected basis. The detector is
based on the comparison of these signals with an abrupt
change model.

2 SIGNAL ADAPTED DECOMPOSITION

2.1 Wavelet-packet decomposition

A wavelet-packet decomposition [3] [5], is an extension
of the DWT and can be obtained by a generalization of
the fast pyramidal algorithm [4]. This decomposition
is depicted in Figure 1, where A and g are the pair of
quadratic miror filters (QMF) used in the DWT, associ-
ated to the scaling function ¢ and the wavelet function
Y. The wavelet packets (Cim(k)), where j denotes the
resolution level, m the spectral band and & the transla-
tion parameter, result from the signal decomposition on
the basis of W,, functions such that :

Cim(k) = (2(t), 2792w, (2-9t - k))
Wam(t) = 212 5, he Wi (2t — k)
Womr (t) = 2257, gx Wi, (2t — k)

Wo corresponds to ¢
W1 corresponds to v

As shown in Figure 1, wavelet-packet decomposition
can be represented as a binary tree, in which each node
corresponds to a wavelet-packet (Cim(k)), j being the
level in the tree.

In terms of time-frequency representation or, 1n an
equivalent way, of filtering, one can associate at each of
the successive steps of the decomposition (levels in the
tree) a time-frequency sampling (Fig. 2). Through the
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Figure 1: : Wavelet-packet decomposition represented

as a binary tree. % and ¢ correspond to the QMF fil-
ters of the DWT. For each level, the bandwidth and the
length of the wavelet packet Cfm are indicated.

decomposition. the frequency resolution increases when
the time resolution decreases.
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Figure 2: : Time-frequency pavement (solid lines) and
ideal time-frequency representation (dot lines) of a 4-
component signal (test signal used in this paper). a,b,c
. different levels of the wavelet-packet decomposition. d
: 1deal sampling for the test signal.

2.2 Principles for the choice of a “best basjs”

Wavelet-packet decomposition is a redundant represen-
tation of the signal. from which we must choose a “best
basis” according to our objectives. Our goal is to find a
basis allowing separation of the different components of
the signal. and then to obtain monocomponent tracks
having the best possible time resolution. Figure 2-d
shows the time-frequency pavement corresponding to
this requirement .

2.3 “Best basis” construction algorithm

The entropic criterion, well adapted for signal
compression-reconstruction, is not suitable for our ob-
Jectives. Effectively, applied to multicomponent signals,

it results in a too precise frequency localization of the
components, leading to low time resolution. We have
chosen an energetic criterion allowing to decide if the
signal has a significant activity in a given frequency band
characterized by the j,m indices of the wavelet-packet,
From this criterion, the principle of the basis selection
algorithm is the following :

1. From the binary tree of wavelet-packets, we build
a corresponding tree with the same structure, and
where a given node takes the value 0 or 1 accord-
ing to the value of the corresponding wavelet-packet
variance :

Laf var [(Cipm (k)] > sv
{Oels:a [ ’ 7 (1)

Taking again the example of the four-component
signal used in Figure 2, we obtain the tree of Figure
3-a where each node at 1 corresponds to a packet
having at least one component.

2. The inspection of the tree from the bottom gives
the multi and mono component nodes. The nodes
having more than one component are put to 2 (Fig.

3-b).

3. We select the nodes at 1 having a father at 2 (Fig.
3-c), that is to say monocomponent wavelet-packets
whose father is multicomponent. This guarantees
separation of components with maximal time reso-
lution.

Figure 3: “Best basis” construction steps on the 4-
component signal used in Fig.2 : a- nodes at 1 have at
least one frequency component, b- mono(1) and multi(2)
component nodes, c- “best basis” selection.



3 RECONSTRUCTION AND DETECTION

Given a tree with n nodes at 1 (indexed by ; = (4, m)),
we construct from the corresponding wavelet-packets Ci,
n signals (z;(t)) of the same length N, using the fast
pyramidal algorithm, with Cy(k) = 0 for # # i (Fig.
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Figure 4: The set of monocomponent signals z; (t) re-
constructed from the four wavelet-packets selected from
a test signal. Vertical lines mark the position of the true
changes.

To detect a shift from a frequency band to another
one, an abrupt change is validated if one can observe, at
the same time, in at least two tracks i and in opposite
directions, a change in mean in the variance (vi(t)) of
the signal (z;(¢)). For each level, a local index (vr;(k))
is defined equal to the intercorrelation between (vi(k))
and an abrupt change model defined as

me(t) = 1sit<
me(t) = —=1sit>0

{vi(t)} is estimated on a 20 points moving window cen-
tered on k :

Finally a global index /(t) is defined from the local
indices (figure 5):

I(t)= rgg_x{sqrt (o (t) vy ()N} *

1/2 [sign (vr; (¢)) — sign (vr; (t))]

The first term is more important when the product
concerns 2 levels affected by a shift. The second term

allows to consider only opposite jumps in order to reduce
noise sensibility. A change is detected in ¢ if

I(t) > B and I (t) is a local mazimum (2)

where A is a threshold, whose different values will be
used for construction of several ROC curves.
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Figure 5: Index I(t) calculated from the set of mono-
component signals z; from Fig.4.

4 TEST SIGNALS AND RESULTS

All the simulated signals present two changes. Let
us define a finite duration component : s(f,a,[t1,t2]),
where f is the normalized frequency, a the amplitude
and [t1,¢2] the time duration. The signal z consists in
4 components : 5(0.15,0.5, [1,512]), s(0.2, 1,[[1,200] U
[300,512])), $(0.35.1,[200, 300]), s(0.4,1, (1,512])). A
white noise (SNR=5dB) is added to the signal and 100
records of the signal are generated by varying the noise
draw. The wavelet used for the decomposition is a
twenty samples Daubechies wavelet.

The performances are evaluated, on one hand, in
terms of the selected basis and, on the other hand,
through ROC curves showing final results of detection.
Figure 6 shows the rates of selection of each node of the
wavelet-packet tree, calculated on the 100 test signals.
The threshold sv from Eq.(1) controls the selection of
the basis. A small sv will detect more nodes having
activity, i.e. having at least one frequency component.
This will result in a too precise frequency localization
leading to low time resolution. Conversely, a high sv
may cause that one or several frequency components are
missed. In our example, comparing with the four-packet
ideal basis (Fig. 3-c) we can observe that 2 packets are
selected at 100% and the two others at 96%.

Concerning the ROC curves (Fig 7), for a given
threshold 3 (Eq.(2)), the true alarm rate (TP) is in-
cremented every time a change is detected in tolerance



windows centered around the true changes and the false
alarm rate (FP) is incremented if at least a change is
detected outside the tolerance windows. The percents
of FP and TP are calculated on the 100 test signals (200
changes).

Figure 6: The sum of the “best basis” obtained from
100 test signals for a given threshold sv = 0.4 (the test
signals  are normalized so that o, = 1). The ideal basis
is plotted Fig.3-c.

5 CONCLUSION

While usually a best basis selection is motivated by sig-
nal compression, we have developed a decomposition
method in a context of abrupt change detection. Qur
algorithm provides a basis that separates the different
frequency components, with the largest bandwidth and
then the best time resolution for a given dyadic decom-
position.

We are currently working to improve the method in
two directions : 1) defining a basis selection independent
of any arbitrary threshold ; 2) improving time localiza-
tion by selecting a basis independent, of the binary rep-
resentation of the wavelet-packet decomposition. Appli-
cations concerning musical signals are in progress.
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Figure 7: Roc curves plotted for 3 different basis selec-
tion thresholds sv. (The test signals z are normalized
so that o = 1.)
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