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ABSTRACT channels whose bandwidth is less than their minimum
cycle frequency. Moreover, cyclostationary-based

approaches cannot detect signals which have the same

one qf_the mostim_portan_t i§sues in array processing. BXycle frequency. In general, dealing with higher-order
exploiting the cyclic statistics and higher-order temporalcyclic statistics requires a Ia’rge amount of data. Further

roperties of communication signals, cyclic higher-order . s
brop 9 Y 9 conventional cumulant-based algorithms become very

statistics (CHOS) direction-finding approaches have been . . . X
) ) complicated and are computationally intensive when a
proposed for narrow-band non-Gaussian signals,

However, conventional cumulant-based algorithmscummant higher than the fourth-order is used  [4].
' Some studies [1][2][5][6][7] are based on the

.beco”.‘e very - complicated .and are CompUtat'Ona".ywndamental properties of the cyclostationarity concept
intensive when a cumulant higher than the forth-order is . d S

) e . L and discuss the problem of using cyclic higher-order
used. In this paper, by utilizing a linear prediction (LP)

model of the sensor outputs, a new cyclic higher-ordeStat'sncs (CHOS), where cyclic MUSIC was generalized

method is given to detect the signals of interest (SOI)FDy using forth ord_er CYC“C cumulan_ts for one Iagto
estimate the direction of arrivals (DOAs) of
The proposed method can not only reduce the . ; . 7
! , cyclostationary signals. In this paper, by utilizing a

computational load and completely exploit the CHOS,; I

. ! ; linear prediction (LP) model of the sensor outputs, a new
temporal information, but can also correctly estimate the_ . . N ;
: X ; . . cyclic higher-order method is given to detect the signals
DOA of desired signals by suppressing undesired signals;

We also show the effectiveness of the proposed metho%f Interest (SOI). The proposed method can_reduce the
) . computational load and completely exploit CHOS
through simulation results.

temporal information multiple lags through the use of
the LP model. It can also correctly estimate the DOA of
1. INTRODUCTION desired signals by exploiting the cyclostationarity of the
The direction-finding approach for impinging signals is signals to suppress undesired signals. The proposed
one of the most important issues in array processingnethods, appropriate for uniform linear arrays, employ
Some types of modulated signals like QPSK and digitalCHOS of the array output and suppress additive Gaussian
QAM can not be processed adequately by using secongbise of unknown spectral content -- even when the noise
order statistics, which are appropriate only when theshares common cycle frequencies with the non-Gaussian
signals are Gaussian [1]. In recent years, some neB8OIl. In addition, CHOS are tolerant of non-Gaussian
signal-selective direction-finding algorithms such asinterferences with cycle frequencies other than those of
cyclic MUSIC and ESPRIT have received much attentionthe desired signals and allow for the consistent estimation
in communication systems for their ability to improve of the angles of arrival of signal sources whose number
signal detection. These algorithms have led to thecan be greater than the number of sensors.

development of the theory of second-order o
cyclostationarity of signals. On the other hand, by /\\ /5*(”)
exploiting the higher-order temporal properties of sensor . L sensor
communication signals, many algorithms for direction- T T D T 1
finding (DF) have been proposed for narrow-band non-

Gaussian signals. However, there is a class of signals

whose order is greater than two originating from, forFig. 1 The structure of an uniform linear array with
example, second-order cyclostationary signals filtered by Sensors in the base station.

The direction-finding approach for impinging signals is

X () X,(n) x,(n)



2. SIGNAL MODEL AND CYCLIC CUMULANTS cyclostationarity when its time-varying cumulants, up to
If the uniform linear array consists ® sensors with orderm, are (almost) periodic functions of time. - Tre

separation distand® as shown in Fig.1, then the narrow- .th order cycll_c cumu'lant Sl pycle frquem}o_ F x(n) .
. . is the Fourier series coefficient of its time-varying
band signal model is given by

cumulant
Xi(n):Z§(')eXp(- prrt (i-1)Dsing,/ c)tv, (n) (1) Con (M Ty, T ) = cum{x(n), X) (7)o, K (neT )} (4)
- and is given by
where s (n [v,(n)] is the k-th source signal [sensor -
noise], 6, is its DOA,P is the number of source signals, c_(a;r,,-,7,.,)= |imizncmx(ml,...,rm)e-im, (5)
f. is the carrier frequency, and is the velocity of NoeN &

[

propagation. In this study, we will work under the where (*) is either a conjugate manipulation or nothing,
following assumptions on the signal model: that is (*) is an optional conjugation [3]. With the finite

[Al] s(n's are non-Gaussian, mth  order data and under absolute cumulant summability (i.e.
cyclostationary with a common cycle frequency andmixing), the estimate

with absolutely summable cumulantsn and nonzero L
cumulants of ordem. Co(iTy T )= — ZJCmX(H;Tu" T )elrm (6)
[A2] v,(n) in (1) is zero-mean, either stationary or N =
Gaussian, and independent of the source signals or (NoR consistent and asymptotically normal.  Specifically for
Gaussian with different cyclostationarity to the source m=34 when E{x(1)} =0, we have, for example,
signals. )
The above assumptions will be used all the followingc, (a;r,,7,)= lim iNZjE{x ) X(n+T) K 7)) 8™ (7)
properties of cumulants [3]: Nee N G
[P1]  cumip,x;, 0., ., 00Xy} = 040 7+ Py CUM Xy, X+ X,

for constant p,,p,, - p, C4X(G;T1,T2,f3)
[P2] If the random variablesx,x,x} and = lim = STEA D K 11y kner) X o))
10 Yoo Yy @re independent, then N=e N & @
“E{X D X(n+1)} E(x 1) kK 1)
CUT{X1+YI’X2+ o A ¥ SEX )X T} E X mer) K Ty
=cum{x, X, %, }+ cum v, Voo, W) X3 R} EX el (x oyl

[P3] For the set of random variablegy,, x, XX}, With finite data, the estimate of theh-order cyclic

cumiX, + ¥y, X, -, % } = cund ¥, %+, X1+ cum %, %;-+, X moment is given by

[P4] If any group of thex's are independent of the ka(a;rl,rz,~~~rk,l)=%h§x(n)x*(n+T1)~~~ 0 (et ) &P

remaining x;’s then cum{x,,x,,---,x,} =0. n=

and sample cyclikth-order cumulants are estimated via
sample cyclic moments of ordek [11].

[P6] For Gaussian random variables,x,, -, %}, For stationary x(n), the cyclic cumulant is time invariant,
and hencec,_(a;1,,,7,,,)=0,0ma#0, whereas for
Gaussian (cyclostationary or not) x(n),

[P5] cum{x,x,, -, %} is symmetric in its arguments.

cum{x,, %,,---, %, =0 for n=3.

By coIIecting.the rgceived signglx, (n)} for i=1-- M, C (a;t,-,1,,)=0, m=30a. Consequently, higher-
then the received signal vecto(n) can be expressed as order cyclic statistics can distinguish between stationary /

x(n)= A@)s(n)+v(n), n=01--,N-1 (2) cyclostationary and Gaussian / non Gaussian processes.
where

3. CHOS DOA ESTIMATION EXPLOITING

LINEAR PREDICTION MODEL

_ _ Supposing that the received datg(n) is predicted as a
a(6,) =[Lexp(-j2nf D sig, /c ), 3) linear combination of the remainingM(-1) sensor
- expEj2nf, M -1 sird, /c ]T ) outputs expressed by

Most communication signals are not only non-Gaussian
but also exhibit cyclostationarity due to a modulation
with carrier. Further, the corresponding discrete-time

signals obtained by oversampling these continuous timWhere taj are the LP coefficients. By multiplying (9)
9 y mpling y appropriate delayed versions of the random process
signals are also cyclostationary. Therefore, a process

(xX1).n=01-]} is said to exhibit mth order x,,(n) and taking expectations, it is not difficult to show

A©)=[a(8,) AB,),, aB5)], n)=[s(n), (N, s(q
and the steering vector is parameterized as follows

xM(n)+gam7i(r):eM(r) ©)



that the third- and forth-order cumulants satisfy theTaking the singular-value decomposition (SVD) into

difference equation (9). gives C =UAV", where U =[u,,---,u,,], V =[V, -, Vy_,l,
and A=diagi,,- A,_,)- By using the SVD and the
Coiyn, (AT T)+ Za iy, @3 T1T2) =0 (10) number of P,, the estimatea of the coefficientsa is
obtained by
M-1 A _ e vu”
C4><MXM><’M>2M(G;T1’T2’T3)+ ZaiCxMﬁxM;M;M (a;Tsz:Ts):O (11) a= IA_Y- (17)
=1 = i

Recall the narrow-band signal model (1) and consider thé\fter the parameterga} have been estimated their
third-order and fourth-order cyclic cumulant of tketh DOA can be found by searching the positions of the
sensor output, which under assumptions [Al] and [A2]peaks of the power spectral density given by

and properties of cumulant [P1-P6] are respectively P(&) = P(6) 1 (18)
w)= =
Corry, (@3T0T2) |1+ a7+ +3, 7
= < g izme(M-IDsOe C (giT T ) (12) where z=exp(jw). Therefore, to obtain the DOA of the
; s desired signals, we choose the cycle frequeacwhich

corresponds to the desired signals and solve equation (16),

and and we search for the positions of the peaks of (18).
4XMXMXMXM(a T T T3) c3xnx:xxa(a;0'0) c3x1x;xa(a;0'0) CsxAx'xA(a;T'T)"' c3xax:xxa(a;1'1)
s
- @ 12e(-1)Dsiny /e C4 (a;rl,rz,r3) D i i
2 " (13) > O O
where P, are the number of SOI. If the cumulants of > N L
the process are known, then by evaluating (10) and (11)> F F
for various lagsr,,7,,7,, it is possible to obtain linear X E ——— -
equations to solve for coefficientg} . For example,
letting r,=7,=7,=012---,L-1Yields LPF
# = X0
C. . (00 C... (00 4 =
3Xy lXM.XM ! . 3"14/1 X\A ! a2
’ : Fig. 2 Block diagram for the proposed methods
3XM1XM><M( _lL 1) 3>§M>€A(L :LL ]) .
M-1 (Third order)
(14)
(0 0)

3><M X xM

=7 4. NUMERICAL EXAMPLES

(|_ 1,L-1) First of all, we show the effectiveness of the higher-order
cyclic cumulant. Figures 3 and 4 show examples of the
absolute values of second- and forth-order cyclic
cumulants at a varying cycle frequeney and lag
. ; parameter r . The signal used in these examples contains
Co xxx(or L-1L-1) - C‘,,WM(G;L-lL-lL-J) am;_l (15) one BPSK signal witha =025, one AM signal with
a =04, and Gaussian background noise. The BPSK
signal is filtered using a raised cosine filter with a 0.5
= l rolloff factor. The SNRs of the BPSK and AM signals
(@:L-1L-1L-1) (with respect to the noise) are 10 dB and 0O dB,
respectively. The figure of the forth-order cumulant
or shows significant improvement of the BPSK signal
Cas detection at cycle frequency =0.25compared to the
-y (16) second order.
Figure 2 depicts the block diagram for generating theFinally, we present the simulation results that show the
third-order cyclic cumulants which follow the equation effectiveness of the proposed method. We considered a
(14) . As shown in Fig. 2, the structure is very simpleuniform linear array having eight elements with half-
and can reduce the computational load. wavelength spacing. Three signals impinge on the array.
The rank of the cumulant matrix in (14) and (15) is equalThe SOls are two BPSK signals with 0.25 baud rates
to the numberp, of SOI with cycle frequencya . (a=0.29 which arrive from 20 and 50. The
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interference is an AM signal arriving from -23@=0.6).

The length of the sample data i$=512, and the lag
parameter id2=16. The signal-to-noise ratios (SNR) for
each source is defined as the ratio of the power of each
source to that of the background noise. In this example,
we set the SNR of the SOI at 0 dB, and the SNR of the
AM signal at 3 dB. Figure 5 shows the results of the
proposed DOA estimation when we set 025, where
conventional cyclic MUSIC and cyclic LS [8] methods
are compared to the proposed method using forth order
cumulant. These simulations were performed under low
SNR and strong interference conditions, which are
advantageous for our method with respect to cyclic
MUSIC and cyclic LS.
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Fig. 4 Absolute value of forth order cyclic cumulant
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Fig. 5 Simulation results in DOA estimation
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