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ABSTRACT

We address the problem of estimation of the fractional-
power spectrum of certain classes of symmetric, alpha-
stable (S�S) processes. We start with a summary of the
key de�nitions and results from the theory of stationary,
harmonizable S�S processes and proceed to discuss the
performance of fractional-power periodograms. Next,
we present a high resolution fractional-power spectrum
estimation algorithm that we term \the minimum disper-
sion distortionless response." The algorithm is a gener-
alization of the classical Maximum Likelihood Method
of Capon. Preliminary tests of the algorithms are run
on simulated data.
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1 Introduction

The design of modern signal processing algorithms needs
to account for the possibility of operation of the al-
gorithms in a highly non-Gaussian environment in which
signals and/or noises may be characterized by stochastic
processes with distributions with tails that are signi�c-
antly heavier than the tails of the Gaussian distribution
[7, 2, 6]. Such an environment is termed \impulsive"
and is quite common in radio links, underwater sonar
and submarine communications, radar, telephone lines,
and mobile communications [7, 2, 6]. In an impulsive en-
vironment, traditional Gaussian algorithms will perform
poorly. Thus, a need arises to design signal processing
algorithms that maintain high performance when operat-
ing in an impulsive environment and are robust to 
uc-
tuations in the characteristics of this environment. This
task can be achieved only if good statistical models are
available to describe and quantify the interference.
In a number of applications in the above areas, the sig-

nal processing tasks include the determination of the fre-
quency content (spectrum) of measured signals/noises.
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In radar and sonar, for example, random amplitude mod-
ulation results from Doppler spreading from fast moving
targets. Time-selective fading in communication chan-
nels or dispersive propagation in underwater acoustic
channels also results in random amplitude modulation.
Finally, co-channel interference from multiple users in
communication systems can also be described as a su-
perposition of randomly amplitude-modulated sinusoids.
For these applications, signal processing tasks include
the estimation of the distribution of signal/noise power
over a frequency range. Collectively, this problem is re-
ferred to as power spectrum estimation.
Traditional power spectrum estimation techniques

rely on a Gaussianity assumption for the measured
data or on the assumption of existence of �nite second-
and fourth-order statistics. The relevant literature is
vast and includes nonparametric, parametric, and sub-

space techniques. Recently, related array signal pro-
cessing techniques were extended to account for lack
of existence of �nite second- or higher-order statist-
ics in the signal/noise models [4, 5]. It was shown,
that maximum likelihood techniques [4] based on the
Cauchy, as opposed to the Gaussian, distribution and
subspace techniques [5] based on the concept of covari-
ation, as opposed to the concept of covariance, outper-
formed existing techniques when the data distribution
deviated from the Gaussian and remain robust in the
entire class of alpha-stable distributions. The purpose
of the present paper is three-fold: (i) we review the
concept of fractional-power spectrum of a stationary,

harmonizable S�S process, (ii) we present fractional-
power periodograms and their performance as non-
parametric fractional-power spectrum estimators, and
(iii) we present a parametric high resolution algorithm
that extends the classical Maximum Likelihood Method
of Capon. The paper is accompanied by preliminary
tests of the proposed algorithms on simulated data.

2 Harmonizable S�S Processes

A. Power-Spectrum of Stationary Fourth-Order Pro-

cesses

The representation of fourth-order, zero-mean, mean-



square continuous, stationary processes Zt, t =
0;�1;�2; : : :, is a well-studied problem in the statist-
ical and signal processing literature [3]. The assumption
is that the process Zt is the Fourier transform of a pro-
cess with orthogonal increments. More speci�cally, such
processes admit a representation of the form

Zt =

Z �

��

eit! d�(!); (2-1)

in terms of a zero-mean process �(!), �� < ! < �, with
orthogonal increments and

Efjd�(!)j2g = �(!) d!; (2-2)

where �(!) is a non-negative function.

The spectral density, or simply the power spectrum,
of the process Zt is de�ned to be the function �(!) and
relates to the covariance function of Zt through [3]

Covariance(Zt; Zs) � EfZtZ
�

s g

=

Z �

��

ei(t�s)!�(!) d!:

(2-3)

Therefore, the power spectrum of the process Zt is the
Fourier transform of the covariance function of the pro-
cess.

The spectral density function of a stationaryGaussian
process provides a complete characterization of the pro-
cess in the sense that its �nite distributions of arbitrary
order can be expressed in terms of the spectral density
function.

B. Fractional-Power Spectrum of Stationary Harmoniz-

able S�S Processes

Harmonizable S�S processes are Fourier Transforms of
S�S processes with independent increments [1]. More
speci�cally, a harmonizable S�S process Zt, t =
0;�1;�2; : : :, is de�ned as

Zt =

Z �

��

eit! d�(!); (2-4)

where the process �(!) is S�S with independent incre-
ments and

Efjd�(!)jpg�=p = C(p; �)�(!) d!;

for 0 < p < �: (2-5)

In Eq.(2-5), C(p; �) is a constant, independent of the
process �(!) and �(!) is a non-negative function that we
will call the fractional-power spectral density or, simply,
the fractional-power spectrum of Zt.

We note that the integral in Eq.(2-4) is de�ned by
means of convergence in probability or, equivalently, in
the p-th mean, 0 < p < �, and the �nite-dimensional

characteristic functions of arbitrary order N of the pro-
cess Zt are given by

Efexp[i<(

NX
n=1

z�nZtn)]g =

exp[�c�

Z �

��

j

NX
n=1

z�ne
itn!j

��(!) d!]; (2-6)

where c� = 1
��

R �
0
j cos �j� d�. It can also be shown that,

for a characteristic exponent 1 < � < 2, the covariation
function of Zt can be expressed as

Covariation(Zt; Zs) =

Z �

��

ei(t�s)!�(!) d!: (2-7)

Therefore, the fractional-power spectral density of a
stationary, harmonizable symmetric, alpha-stable pro-
cess plays a role completely analogous to that played by
the (usual) power spectral density of a stationary Gaus-
sian process.

C. Fractional-Power Spectrum Estimation Problem For-

mulation

Consider the measurements (data) fZt; t = 0 �

1;�2; : : : ;�Tg from a model as in Eqs.(2-4) and (2-5).
We want to deduce (estimate) the fractional-power spec-
trum �(!), �� < ! < � from these measurements.

3 Fractional-Power Periodograms

In this section, we look into the design of non-parametric

estimators for the fractional-power spectrum of a har-
monizable S�S process. This design is based on a
fractional-power version of the usual periodogram as in
the following theorem (summary of several theorems in
[1]):

Proposition

Given the data fZt; t = 0 � 1;�2; : : : ;�Tg, de�ne the

p-th power periodogram

IT (!) = Cp;�jdT (!)j
p; (3-1)

where

dT (!) = <f

TX
t=�T

e�it!hT (t)Ztg: (3-2)

Let hT (t) be a bounded even function (window), vanish-

ing for jtj > T and having real, non-negative Fourier

transform

HT (!) =

t=TX
t=�T

hT (t)e
�it! ;

with
R �
��
jHT (!)j

� d! = 1, for all T . If Cp;� is a proper

normalization constant, p is chosen as 0 < p < �, and

hT (t) satis�es certain mild conditions as T ! 1 [1],

then IT (!) is an asymptotically unbiased estimator of

�(!)
p

� . Additionally, assume that p is chosen as 0 <



p < �=2 and appropriate smoothing spectral windows

WT (!) are applied to IT (!) to obtain

fT (!) =

Z �

��

WT (! � u)IT (u) du: (3-3)

Then �T (!) � [fT (!)]
�

p is an asymptotically unbiased

and consistent estimator for the fractional-power spec-

tral density �(!).

4 High Resolution in Fractional-Power Spec-

trum Estimation

Let us now consider high resolution methods for
fractional-power spectrum estimation. More speci�cally,
we look into extensions of Capon's maximum likelihood
method. Other high resolution methods will be con-
sidered elsewhere.
Consider a FIR �lter with impulse response h!0(n),

n = 0; 1; 2; : : : ; q � 1. Let

H!0(!) �

qX
n=0

h!0(n)e
�i!n (4-1)

be the �lter frequency response. We will design the �lter
so that

H!0(!0) = 1 (4-2)

and its passband around the frequency !0 be as narrow
as possible. This second requirement will be satis�ed if
we design the �lter so that the dispersion of its output is
as small as possible and at the same time the constraint
in Eq.(4-2) is satis�ed.
Let Zt be the input to the FIR �lter. Then, the �lter

output will be

Vt =

qX
k=0

h!0(k)Zt�k

=

qX
k=0

h!0(k)

Z �

��

ei(t�k)!�(!) d�(!)

=

Z �

��

eit![�(!)]1=�[

qX
k=0

h!0(k)e
�ik! ] d�(!)

=

Z �

��

eit![�(!)]1=�H!0(!) d�(!): (4-3)

Therefore,

Covariation(Vt; Vs) =Z �

��

ei(t�s)!�(!)jH!0(!)j
� d!: (4-4)

Setting RZ(t � s) = Covariation(Zt; Zs) and taking
Eq.(2-7) into account, we get

Covariation(Vt; Vs) =Z �

��

ei(t�s)![
X
k

e�i!kRZ(k)]j

qX
n=0

e�i!nh!0(n)j
� d!:

(4� 5)

We, thus, need to minimize Covariation(Vt; Vs) w.r.t the
sequence h!0(n); n = 0; 1; 2; : : : ; q, s.t.c. H!0(!0) =Pq

n=0 h!0(n)e
�i!0n = 1.

5 Illustration on Computer-Synthesized Data

The performance of the fractional-power periodogram
is illustrated next on computer simulated data. Fig. 1
shows typical records with a spectrum �(!), given by

�(!) =
1

2�

1X
t=�1

Rte
�i!t; (5-1)

where

Rt = exp(�0:02jtj)[cos(0:35�t)

+
1

15�
sin(0:35�t)]

+ exp(�0:04jtj)[cos(0:4�t)

+
1

15�
sin(0:4�t)]:

(5-2)

for the Gaussian and a non-Gaussian alpha-stable (with
� = 1:5) case. In Fig. 2, the estimate is shown as ob-
tained from 10 non-overlapping records, each of length
128. Clearly, the use of a fractional power of order p = 2
degrades in the non-Gaussian case. On the other hand,
the use of a fractional power of order p = 0:6 allows the
estimation of the true spectrum in both the Gaussian
and the non-Gaussian cases.

6 Summary, Conclusions, and Future Work

In this paper, we reviewed harmonizable alpha-stable
random processes as Fourier transforms of alpha-stable
random processes with independent increments. We dis-
cussed non-parametric, as well as high-resolution, al-
gorithms for fractional-power spectrum estimation and
illustrated the algorithms with synthetic data. Future
work in this area will address the problem of high res-
olution in fractional-power spectrum estimation and ex-
tensively test the algorithms proposed in here, as well
as other approaches. Additionally, future work will also
concentrate on similar problems for classes of alpha-
stable processes other than the harmonizable.
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Figure 1: Typical data sets
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Figure 2: True spectrum (dotted line) and its estimates
(solid line)


