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ABSTRACT

We address the problem of estimation of the fractional-
power spectrum of certain classes of symmetric, alpha-
stable (SasS) processes. We start with a summary of the
key definitions and results from the theory of stationary,
harmonizable SaS processes and proceed to discuss the
performance of fractional-power periodograms. Next,
we present a high resolution fractional-power spectrum
estimation algorithm that we term “the minimum disper-
sion distortionless response.” The algorithm is a gener-
alization of the classical Maximum Likelihood Method
of Capon. Preliminary tests of the algorithms are run
on simulated data.
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1 Introduction

The design of modern signal processing algorithms needs
to account for the possibility of operation of the al-
gorithms in a highly non-Gaussian environment in which
signals and/or noises may be characterized by stochastic
processes with distributions with tails that are signific-
antly heavier than the tails of the Gaussian distribution
[7, 2, 6]. Such an environment is termed “impulsive”
and is quite common in radio links, underwater sonar
and submarine communications, radar, telephone lines,
and mobile communications [7, 2, 6]. In an impulsive en-
vironment, traditional Gaussian algorithms will perform
poorly. Thus, a need arises to design signal processing
algorithms that maintain high performance when operat-
ing in an impulsive environment and are robust to fluc-
tuations in the characteristics of this environment. This
task can be achieved only if good statistical models are
available to describe and quantify the interference.

In a number of applications in the above areas, the sig-
nal processing tasks include the determination of the fre-
quency content (spectrum) of measured signals/noises.
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In radar and sonar, for example, random amplitude mod-
ulation results from Doppler spreading from fast moving
targets. Time-selective fading in communication chan-
nels or dispersive propagation in underwater acoustic
channels also results in random amplitude modulation.
Finally, co-channel interference from multiple users in
communication systems can also be described as a su-
perposition of randomly amplitude-modulated sinusoids.
For these applications, signal processing tasks include
the estimation of the distribution of signal/noise power
over a frequency range. Collectively, this problem is re-
ferred to as power spectrum estimation.

Traditional power spectrum estimation techniques
rely on a Gaussianity assumption for the measured
data or on the assumption of existence of finite second-
and fourth-order statistics. The relevant literature is
vast and includes nonparametric, parametric, and sub-
space techniques. Recently, related array signal pro-
cessing techniques were extended to account for lack
of existence of finite second- or higher-order statist-
ics in the signal/noise models [4, 5]. It was shown,
that maximum likelihood techniques [4] based on the
Cauchy, as opposed to the Gaussian, distribution and
subspace techniques [5] based on the concept of covari-
ation, as opposed to the concept of covariance, outper-
formed existing techniques when the data distribution
deviated from the Gaussian and remain robust in the
entire class of alpha-stable distributions. The purpose
of the present paper is three-fold: (i) we review the
concept of fractional-power spectrum of a stationary,
harmonizable SaS process, (ii) we present fractional-
power periodograms and their performance as non-
parametric fractional-power spectrum estimators, and
(iii) we present a parametric high resolution algorithm
that extends the classical Maximum Likelihood Method
of Capon. The paper is accompanied by preliminary
tests of the proposed algorithms on simulated data.

2 Harmonizable SaS Processes

A. Power-Spectrum of Stationary Fourth-Order Pro-
cesses
The representation of fourth-order, zero-mean, mean-



square continuous, stationary processes Z;, t =
0,£1,%2, ..., is a well-studied problem in the statist-
ical and signal processing literature [3]. The assumption
is that the process Z; is the Fourier transform of a pro-
cess with orthogonal increments. More specifically, such
processes admit a representation of the form

z= | " e dg(w), (2-1)
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in terms of a zero-mean process {(w), —7 < w < 7, with
orthogonal increments and

E{|dg(w)I*}

where ¢(w) is a non-negative function.

The spectral density, or simply the power spectrum,
of the process Z; is defined to be the function ¢(w) and
relates to the covariance function of Z; through [3]

= $(w) dw, (2-2)

Covariance(Zy, Zs) = E{Z:Z}}

= / ei(tfs)“’gb(w)dw

(2-3)

Therefore, the power spectrum of the process Z; is the
Fourier transform of the covariance function of the pro-
cess.

The spectral density function of a stationary Gaussian
process provides a complete characterization of the pro-
cess in the sense that its finite distributions of arbitrary
order can be expressed in terms of the spectral density
function.

B. Fractional-Power Spectrum of Stationary Harmoniz-
able Sa.S Processes

Harmonizable SaS processes are Fourier Transforms of
SaS processes with independent increments [1]. More
specifically, a harmonizable SaS process Z;, t =
0,£1,%2, ... is defined as

zi= [ e aggo, (2-4)

where the process £(w) is SaS with independent incre-
ments and

E{ldg(w) P3P = Clp,)p(w) dw,
for 0 <p < a. (2-5)

In Eq.(2-5), C(p,a) is a constant, independent of the
process ¢(w) and ¢(w) is a non-negative function that we
will call the fractional-power spectral density or, simply,
the fractional-power spectrum of Z;.

We note that the integral in Eq.(2-4) is defined by
means of convergence in probability or, equivalently, in
the p-th mean, 0 < p < «, and the finite-dimensional

characteristic functions of arbitrary order NV of the pro-
cess Z; are given by

N
5{exp[m(2 202 )|} =

expl- /|Zz* () du], (26)

where ¢, = -= [[" | cos#|* df. It can also be shown that,
for a characteristic exponent 1 < a < 2, the covariation
function of Z; can be expressed as

7T

Covariation(Zy, Z,) :/ =gy dw.  (2-7)
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Therefore, the fractional-power spectral density of a
stationary, harmonizable symmetric, alpha-stable pro-
cess plays a role completely analogous to that played by
the (usual) power spectral density of a stationary Gaus-
sian process.

C. Fractional-Power Spectrum FEstimation Problem For-
maulation

Consider the measurements (data) {Z;,¢t = 0 %
1,£2,...,£7T} from a model as in Eqs.(2-4) and (2-5).
We want to deduce (estimate) the fractional-power spec-
trum ¢(w), —7 < w < 7 from these measurements.

3 Fractional-Power Periodograms

In this section, we look into the design of non-parametric
estimators for the fractional-power spectrum of a har-
monizable SaS process. This design is based on a
fractional-power version of the usual periodogram as in
the following theorem (summary of several theorems in

[1):

Proposition
Given the data {Zy,t =0+ 1,£2,...,
p-th power periodogram

+T}, define the

Ir(w) = Cpaldr(w)]”, (3-1)
where .
=R{ > e hr(t)Z}. (3-2)
t=-T

Let hp(t) be a bounded even function (window), vanish-
ing for |t| > T and having real, non-negative Fourier

transform
t=T
— Z hT(t)e—ztw,
t=-—T

with f |Hr(w)|*dw =1, for all T. If Cp o is a proper
normahzatzon constant, p is chosen as 0 < p < «, and
hy(t) satisfies certain mild conditions as T — oo [1],
then Iy (w) is an asymptotically unbiased estimator of
p(w)e. Additionally, assume that p is chosen as 0 <



p < a/2 and appropriate smoothing spectral windows
Wr(w) are applied to It(w) to obtain

frw) = Wi (w —u)Ip(u) du. (3-3)
Then ¢r(w) = [fr(w)]? is an asymptotically unbiased
and consistent estimator for the fractional-power spec-
tral density ¢(w).

4 High Resolution in Fractional-Power Spec-
trum Estimation

Let us now consider high resolution methods for
fractional-power spectrum estimation. More specifically,
we look into extensions of Capon’s maximum likelihood
method. Other high resolution methods will be con-
sidered elsewhere.

Consider a FIR filter with impulse response hy,,(n),
n=0,1,2,...,9g — 1. Let

Hyy(w) = ) hyy(n)e™n (4-1)

be the filter frequency response. We will design the filter
so that
H, (w) =1 (4-2)

and its passband around the frequency wy be as narrow
as possible. This second requirement will be satisfied if
we design the filter so that the dispersion of its output is
as small as possible and at the same time the constraint
in Eq.(4-2) is satisfied.

Let Z; be the input to the FIR filter. Then, the filter
output will be

q
Vi = > hu(k)Zis

k=0

= S huo (k) / " R g() de(w)
k=0 -

- / " G By (R)e ] dE()
-7 k=0

- / €1 [p(w)]/* Hoy (w) dE(w). (4-3)

Therefore,

Covariation(V, Vi) =
/ =909 §() | Ho ()@ . (4-4)

Setting Rz(t — s) = Covariation(Z;, Z5) and taking
Eq.(2-7) into account, we get

Covariation(V;, Vi) =

™ q
/ ei(tfs)w[z efikaZ(k)H Z €7iwnhw0 (n)|a dw.
- k n=0
(4-95)

We, thus, need to minimize Covariation(V;, Vs) w.r.t the
sequence hy(n),n = 0,1,2,...,q, s.t.c. Hy,(wo) =
1 By (e 1500 = 1.

5 Illustration on Computer-Synthesized Data

The performance of the fractional-power periodogram
is illustrated next on computer simulated data. Fig. 1
shows typical records with a spectrum ¢(w), given by

o0

P(w) = = > Ree ™, (5-1)

where

R, = exp(—0.02t|)[cos(0.357t)
1
+]_5_7r Sln(0.35ﬂ't)]
+  exp(—0.04[¢|)[cos(0.47¢)

.
+]_5_7r Sln(0.4ﬂ't)].

(5-2)

for the Gaussian and a non-Gaussian alpha-stable (with
a = 1.5) case. In Fig. 2, the estimate is shown as ob-
tained from 10 non-overlapping records, each of length
128. Clearly, the use of a fractional power of order p = 2
degrades in the non-Gaussian case. On the other hand,
the use of a fractional power of order p = 0.6 allows the
estimation of the true spectrum in both the Gaussian
and the non-Gaussian cases.

6 Summary, Conclusions, and Future Work

In this paper, we reviewed harmonizable alpha-stable
random processes as Fourier transforms of alpha-stable
random processes with independent increments. We dis-
cussed non-parametric, as well as high-resolution, al-
gorithms for fractional-power spectrum estimation and
illustrated the algorithms with synthetic data. Future
work in this area will address the problem of high res-
olution in fractional-power spectrum estimation and ex-
tensively test the algorithms proposed in here, as well
as other approaches. Additionally, future work will also
concentrate on similar problems for classes of alpha-
stable processes other than the harmonizable.
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Figure 1: Typical data sets
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Figure 2: True spectrum (dotted line) and its estimates
(solid line)



