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Abstract

This paper deals with the problem of Blind Source Sep-
aration (BSS). BSS algorithms typically require that
observed data are prewhitened. The data are here as-
sumed to be contaminated by highly deviating samples.
Hence, covariance matriz used for whitening and deter-
mining the number of signals is estimated unreliably.
We propose a method where data are first whitened in
a robust manner. Sources are then separated using an
iterative least squares algorithm. The proposed method
is compared to a method based on sample estimates and
the influence of outliers is analysed.

1. INTRODUCTION

Blind source separation has important applications, e.g.,
in speech and array signal processing. In BSS, a col-
lection of observed linear combinations (mixtures) of
source signals are processed in order to find the un-
observable sources. Most separation techniques make
strict assumptions on the number of sources and mix-
tures as well as statistics of the signal. Highly deviating
observations, i.e. outliers, may make these assump-
tions inaccurate: they may make the observed density
appear asymmetric about the mean, inflate the vari-
ances, change the correlation structure as well as add
new insignificant signal components to the data.

Commonly BSS methods require prewhitening that
de-correlates and normalizes the observed data. Whiten-
ing is typically performed based on eigenanalysis of
sample covariance matrix. Outliers cause error by at-
tracting the mean towards them and perturb the eigen-
values and eigenvectors significantly. This also has im-
plications for information theoretical criteria such as
MDL (see [7]) that are used in estimating the number
of signals.

This paper is organized as follows. The BSS prob-
lem is defined and a method for source separation is
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presented in section 2. The problems of prewhitening
in the face of noise is addressed as well. In section 3,
examples and quantitative results on whitening, esti-
mating the number of signals and separating sources in
e-contaminated additive Gaussian noise are given.

2. BLIND SOURCE SEPARATION

BSS has been under busy investigation both in signal
processing and in neural network communities (see e.g.,
[2, 5, 3, 1]). The unobservable sources and the observed
mixtures are related by

X = Asp + vy, (].)

where A is an n x m matrix of unknown constant mix-
ing coefficients, n > m, s is a column vector of m source
signals, x is a column vector of n mixtures, v is addi-
tive noise vector and k is time index. The matrix A is
assumed to be of full rank and sources are typically as-
sumed to be zero mean and stationary. Blindness refers
to the fact that no prior information about the mixing
coefficients is available. All the sources are commonly
assumed to have either positive or negative kurtosis.
One of the sources may be Gaussian (zero kurtosis) if
the noise are non-Gaussian and if the noise are Gaus-
sian none of the sources may be Gaussian.

The separation task at hand is to estimate a sep-
arating matrix H so that the original sources are re-
covered. Observed x are typically whitened prior to
separation. Whitening allows for solving the separa-
tion problem easier because uncorrelated components
with variance 02 = 1 are used as an input and if n = m,
separating matrix will be orthogonal (H~! = HT).

An estimate y of unknown sources s is given by

s=y=H"x. (2)

The estimate can be obtained only up to a permuta-
tion of s, i.e., the order of the sources may change. If
n > m, the number of source signals may be estimated



using criteria such as the MDL (see [7]). The data are
first whitened and the number of signals is estimated
based on robust covariance estimate. In this paper, the
separation is done by employing a least squares algo-
rithm.

2.1. Covariance estimation and whitening

Sample covariance matrix does not perform whitening
reliably in the face of outliers because unreliable esti-
mates of both the mean and covariance matrix are ob-
tained. In this section, the influence of highly deviating
observations on covariance matrix estimate and com-
puted eigenvalues and eigenvectors is studied. Then a
method for estimating the covariances reliably in the
presence of outliers is presented. This robust approach
stems from generalized maximum likelihood principle
[4].

The noise v in (1) are assumed to be additive e-
contaminated distributed as

F=(1-¢)F+ed, (3)

where the actual distribution F'is a mixture of outliers
with unknown distribution G' and the nominal noise
distribution Fy. The fraction of outliers is ¢ (< 0.5).
It is important to note that additive noise is assumed
to act on the observed miztures instead of the sources.

Figure 1 illustrates some of the problems encoun-
tered in whitening in the presence of highly deviating
observations. Points labeled with a,b,c,d,e may be
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Figure 1: Highly deviating observations a,b,c,d,e in-
fluence the estimated variances and correlations and
consequently the eigenvalues and eigenvectors signifi-
cantly.

considered outlying observations and they significantly
influence the estimated covariance matrix. Point a in-
flates the variances but has little effect on correlation.
Point b reduces the correlation and inflates the vari-
ance along the horizontal axis. Point ¢ has little effect
on variance but reduces correlation. Points b and ¢ add
an insignificant dimension to data. If one draws an el-
lipse of equidistant points using Mahalanobis distance
from the center of the data set, points d and e blow up
this ellipse significantly. In addition, these observations
attract the mean towards them and make the density

appear asymmetric. Consequently, the eigenvalues and
eigenvectors of the covariance matrix C' are influenced.
The eigenvalue spread

Amaw (6) /Amin (6) -

and the whole eigenvalue spectra of the estimated co-
variance matrix as well as the directions of the eigen-
vectors may drastically differ from true ones.

Whitening transform W can be defined by terms of
eigenvalues and eigenvectors of the covariance matrix
C as follows

W =A"2uT, (4)

where A is diagonal matrix of the eigenvalues and U is
a matrix of eigenvectors. In case the noises can be
assumed to be zero mean and Gaussian, techniques
such as MDL estimate the number of signal compo-
nents using the ratio of geometric to arithmetic mean
of the eigenvalues [7]. Unreliable estimate results in
both cases if the eigenvalues and eigenvectors are sig-
nificantly perturbed.

Matrices U and A are obtained here by estimating
covariance matrix iteratively so that highly deviating
observations are downweighted. Estimates of the mean
p and covariance C are computed as follows:
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The weights w; are recomputed at each iteration using
distances d;

di = (x; — )" C 7 (xi — )
and the computation is iterated so that distances are

computed using the current estimates of p and C. The
weights are computed by:
1 ifd; =0
w; = w(dl) = %d/b/b) lf dl S dthr (7)
0 if d; > diper,
where constant b = do/7 and dy > dyp, are tuning pa-
rameters controlling the shape of the weighting func-
tion and the distance where the influence of an obser-
vation goes to zero. The weighting function is depicted
in Figure 2. If dyp, = dy weights go smoothly to zero,
otherwise they drop abruptly to zero at dip,.. If time
ordering of data is of importance, outlying sample have
to be substituted by a reasonable value so that no new
signal components are introduced. Here they are re-
placed by a weighted sum of a few of its neighboring
values. The weights w(d;) above are employed in the
summation.
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Figure 2: Two different weighting functions. The dot-
ted line depicts a weighting function where dy > dyp,,

2.2. Separating matrix estimation

An iterative least squares batch algorithm for source
separation is employed. The relationship the between
matrix H and input X may be written

X =HG

where G = G(Y) = [g(y(1)) --- g(y(n))] and H ap-
pears within G as well. The error e is defined by

e=x— Hg(H x) (8)

where g(e) is an appropriate nonlinear function, for
example, tanh() for negatively kurtotic source signals.
The least squares estimate of H is obtained as follows
] A
H=XGT,

where GT is the Moore-Penrose pseudoinverse of G.
The cost function used above is a Bussgang equaliza-
tion cost. In each iteration, values of y = HTx needed
for forming matrix G are computed using the current
estimate of H.

3. EXAMPLES

In this section, performance of the proposed BSS method
is investigated in simulation. Example separation re-
sults are shown and analyzed quantitatively using MSE
measure. Moreover, the robust whitening is analyzed
quantitatively by comparing the eigenvalue spectra and
directions of eigenvectors of estimated covariance ma-
trix to theoretical values and values computed from
sample covariance matrix. The number of signals is
estimated using the MDL criterion. An example of
separation from e-contaminated mixtures is given in
Figure 3. In our simulation, m = 5 source signals and
n = 7 mixtures with randomly generated mixing coef-
ficients in matrix A are used. Each observed mixture
of 500 samples is contaminated with zero mean addi-
tive Gaussian noise with variance o2 = 0.4. Moreover,
10% of the multivariate samples are randomly replaced
by outliers with a large amplitude. The noisy data are
first whitened which is followed by the separation. The
number of signals was estimated using the MDL crite-
rion. The robust method estimated consistently over

different realizations that there are 5 signals compo-
nents whereas the estimate based on sample covariance
matrix was 4 in the example above and it varied be-
tween 4 and 6 depending on realization. Figure 4 shows
the eigenvalue spectra obtained for the data shown in
Figure 3.

Computation of the MSE between the recovered
and original sources over large number of realizations
is difficult because the order or sign of the sources may
change in the separation. Consequently, one needs to
find matching pairs of estimated and original sources
and compute the MSE between pairs yielding the min-
imum error. The SNR between the true and estimated
source signals s; and y; is given in terms of M SE(s;,y;)
as follows

SNR(si,yi) = —10logioM SE(s;, y:)-

SNR’s are averaged over all components and over 10
realizations of 500 samples. The obtained SNR’s are
given in Table 1.

Table 1: Obtained mean and minimum SNR’s using
robust and conventional whitening. The mean SNR
are computed over 10 realizations and over all sources.

Robust C' | Sample C
mean SNR | 35.66 dB | 29.48 dB
min SNR 33.55dB | 27.05dB

Outlying observations tend to offset the mean and
inflate the eigenvalues as well as rotate the eigenvec-
tors of the covariance matrix. As a result, there is
error in the whitening transform which applies scal-
ing and rotation transformations to the observed data.
The covariance matrices estimated from noisy data are
compared to covariance matrix of noise-free mixtures
based on eigenvalues and eigenvectors. Eigenvalues are
compared using the ratio between the sum of eigenval-
ues and eigenvectors by determining the angles between
corresponding eigenvectors. The angle between eigen-
vectors u and v is determined by Z(u,v) = cos *|ulv|.
The eigenvalues are ordered such that Ay > Ap > --- >
Am > -+ > A\, and the related eigenvectors respec-
tively. One needs to be careful in comparing the direc-
tions because the order of the eigenvectors may change
due to outliers. Ounly the m = 5 eigenvectors asso-
ciated with the signal subspace are used in the com-
parison. The results on eigendecomposition based on
500 samples and 10 realizations are given in Table 2.
The performance of sample covariance estimator rela-
tive to robust estimator matrix is at worst for small
contaminated samples. Both methods yield reasonably
good estimates of the largest eigenvalue and the related



Table 2: The influence of outlying samples on eigenval-
ues and eigenvectors. The difference in eigenvalues is
expressed using the ratio of the sum of eigenvalues of
estimated and true covariance matrices and the differ-
ence in eigenvectors by the angle between the estimated
and true eigenvectors.

Robust C' | Sample C
mean 3 A;/ S A | 101 1.17
max S A/ A | 1.04 1.31
mean cos *|ul'd;| | 3.0 degr. | 9.7 degr.
max cos ul'd;| | 9.2 degr. | 40.1 degr.

eigenvector. Sample C starts to produce poor results
for subsequent smaller eigenvalues and related eigen-
vectors. In our experience, the proposed method has
a performance close to optimal also in nominal condi-
tions, i.e., if there are no outliers present in the data
set.

4. CONCLUSION

The problem of BSS in the face of outliers was inves-
tigated. The observed data were whitened in a robust
manner and sources were separated using an iterative
least squares algorithms. The influence of outliers was
analysed in detail. In separation, a significant improve-
ment in SNR over a method based on sample estimates
was achieved.
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Figure 3: An example of BSS from noisy sequences:
(a) Noise free source signals, (b) e-contaminated mix-
tures, (c) separation result using robust whitening and
(d) separation result using whitening based on sample
covariance matrix.

Figure 4: The changes in eigenvalue spectrum for the
example in Fig. 3: 2’s are the spectrum obtained us-
ing robust estimate and o’s using sample estimate of
covariance.



