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ABSTRACT

In this paper we propose a new approach to blind source

separation that exploits the cyclostationary nature of the

sources typically found in communication applications. A

new adaptive algorithm is proposed that simultaneously uti-

lizes Higher Order Statistics (HOS) and cyclic moments. The

approach enables exploitation of periodicities embedded in

the sources such as the carrier frequency or the symbol rate.

It is also presented an analysis to obtain the conditions under

which the algorithm converges to the desired solutions.

1 INTRODUCTION

In this paper we address the problem of recovering non-

Gaussian statistically independent signals from observations

of linear mixtures of them. When the separation is carried

out without resorting to an a priori knowledge of the sources

or the mixing system, the problem is known as blind source

separation [1]. A typical application is the extraction of sig-

nals arriving at an array of sensors in the base station of a

cellular mobile communication system.

In communications applications the sources can be mod-

eled as cyclostationary random processes since their statisti-

cal parameters 
uctuate periodically with time. In this work

we will interpret cyclostationarity as the property of gener-

ating spectral lines when a signal is passed through certain

nonlinear transformations [2].
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Figure 1: Mixture and separation model.

We have considered the signal model illustrated in �gure 1

where s = [s1; :::; sN ]
T is a vector of N statistically indepen-

dent non-Gaussian sources and x = [x1; :::; xM ]T is a vector

� This work has been supported by CICYT, grant TIC96-
0500-C10-02, and Xunta de Galicia, grant XUGA 10502A96.

containing M � N measured signals termed observations.

The observations are related to the sources through the fol-

lowing linear model

x = As+ v (1)

where A is the mixture matrix and v is the Gaussian noise

vector. We assume that A is a full-rank matrix. The ob-

servations vector is processed through a bank of linear com-

biners to produce the output vector y = [y1; :::; yN ]
T whose

components are given by

yi = w
H
i x (2)

where wi is the weight vector of the i-th linear combiner and

the superindex H denotes conjugate transpose. The aim in

blind source separation is to select the vectors wi in order

to recover the sources from the observations, assuming that

both the mixture matrix A and the sources s are unknown.

Since the pioneering work of Herault and Jutten [3],

many adaptive algorithms have been proposed to solve the

blind source separation problem (see [4, 5, 6] and references

therein). All of them have in common the use of Higher Or-

der Statistics (HOS). In this paper we propose an algorithm

that combines HOS and cyclic moments. This way we can

incorporate into the algorithm information about periodici-

ties embedded in the sources such as the carrier frequency

or the symbol rate in digital modulated signals.

The remainder of the paper is organized as follows. Sec-

tion 2 presents the proposed optimization problem and the

resulting adaptive gradient algorithm that solves it. Sec-

tion 3 analyzes the algorithm stability in the separating

points. Section 4 shows simulation results and, �nally, the

conclusions are outlined in Section 5.

2 OPTIMIZATION CRITERION

A zero-mean complex cyclostationary signal s(t) generates a

spectral line at a frequency � when it is raised to a real num-

ber p if it has a non-zero p-th order cyclic moment de�ned

as

m
�
ps =



s
p
(t)e

�j2��t
�
= lim

T!1

1

T

Z T=2

�T=2

s
p
(t)e

�j2��t
dt (3)

The operator < � > denotes time average. Typically, one

dimensional constellations contain second order cyclic mo-

ments at � = 2fc � kfs, k = 0; 1; 2; ::: (fc is the carrier fre-

quency and fs is the symbol rate) whereas two dimensional



constellations (QAM) have fourth order cyclic moments at

� = 4fc � kfs, k = 0; 1; 2; :::.

Let us assume now that each source si(t) is a cyclosta-

tionary signal and contains a nonzero cyclic moment m
�i
pisi .

In case that several sources have the same cyclostationary

properties let us denote S
�l
pl ; l = 1; � � � ; L the set of sources

that contain a nonzero cyclic moment of order pl at the fre-

quency �l and let us term N
�l
pl l = 1; � � � ; L the number of

sources in S
�l
pl . For simplicity reasons, we will assume that

the sets S
�l
pl are disjoint, i.e.,

PL

l=1
N

�l
pl = N .

To separate the N
�l
pl sources corresponding to the set S

�l
pl

we propose that the vectors wi; i = 1; � � � ;N
�l
pl be adjusted

in order to minimize the following cost function

J
�l
pl

=

N
�l
plX

i=1

Ji � 


N
�l
plX

i=1

N
�l
plX

j=1

j 6=i

Jij (4)

where 
 is a positive real number. The cost function Ji is

given by

Ji =


je
j2��lt � y

pl
i (t)j

2
�

(5)

and Jij = Cum(yi; y
�
i ; yj ; y

�
j ) =


jyij
2
jyj j

2
�
�


jyij

2
� 

jyj j

2
�
� j



yiy

�
j

�
j
2 is the fourth-order

cross-cumulant between the outputs yi and yj .

The optimization problem (4) is motivated as a generaliza-

tion of a statistical criterion for blind adaptive beamforming

proposed in [7]. When the sources are statistically indepen-

dent and have negative kurtosis, the only existing minima of

Ji correspond to the extraction of a single source having a

non-zero cyclic momentm
�l
plsi [7]. Therefore, if we adjust the

separating vectors wi according to the maximization of the

�rst sum in (4), we ensure that each output extracts a single

source from the set S
�l
pl . However, since all the sources in

S
�l
pl generate a spectral line in the same frequency �l, it may

occur that the same source is extracted in several outputs

simultaneously. This undesirable situation is penalized by

the set of cross-terms Jij : when yi and yj extract the same

source Cum(yi; y
�
i ; yj ; y

�
j ) will take a negative value whereas

if both outputs extract di�erent sources this term will be

zero.

2.1 Adaptive Algorithm

An advantage of our method is that the optimum weight vec-

tors wi can be iteratively computed using a simple gradient

algorithm

wi(n+1) = wi(n)��

0
B@rwi

Ji(n)� 


N
�l
plX

j=1

j 6=i

rwi
Jij(n)

1
CA (6)

where � is the algorithm step size and rwi
represents the

complex gradient with respect to wi. Evaluating the gra-

dients in (6) and replacing the statistical moments by esti-

mates, we obtain the following stochastic gradient algorithm

wi(n+ 1) = wi(n) + �x(n)
�
ple

�
i (n)y

pl�1(n)

+2


N
�l
plX

j=1

j 6=i

(y
�
i (n)jyj(n)j

2
� y

�
i (n)Ej � y

�
j (n)Eij)

1
CA (7)

where ei(n) = ej2��ln�y
pl
i (n). Ej and Eij are the following

estimators

Ej = (1� �1)Ej + �1jyj(n)j
2

Eij = (1� �1)Eij + �1yi(n)
�
yj(n) (8)

where �1 is a real positive number less than 1.

3 STATIONARY POINTS ANALYSIS

In this section we analyze the stationary points of (4) where

each output extracts a single and di�erent source. For sim-

plicity reasons, we will restrict ourselves to a situation where

only the N
�l
pl sources belonging to the set S

�l
pl are present in

the observations. In addition, we will also assume that pl = 2

and that there is no noise. Without any loss of generality,

sources can be assumed to have unit power since di�erences

between powers can be included in matrix A.

The �rst step is to express J
�l
2 in terms of gij = wH

i aj
where aj is the j-th column of A. Under the assumptions

about the sources, the second order cyclic moment in (4) can

be written as



y2i (t)e

�j2��lt
�

=

N
�l
2X

j=1

g2ijm
�l
2sj

= g
T
i �gi (9)

where � is a diagonal matrix with elements m
�l
2si

=

s2i (t)e

�j2��lt
�
and gi = [gi1:::giN�l

2

]T . In addition,



jyi(t)j

4
�

=

N
�l
2X

j=1

jgij j
4
kj + 2

0
@N

�l
2X

j=1

jgij j
2

1
A

2

=

N
�l
2X

j=1

jgij j
4
kj + 2(g

H
i gi)

2

Cum(yi; y
�
i ; yj ; yj) =

N
�l
2X

m=1

jgimj
2
jgjmj

2
km (10)

where ki =


jsi(t)j

4
�
� 2 is the kurtosis of si. Substituting

(9) and (10) into (4)

J
�l
2 = N

�l
2 +

N
�l
2X

i=1

�
2(g

H
i gi)

2
� g

T
i �gi � g

H
i �

�
g
�
i

�

+

N
�l
2X

m=1

N
�l
2X

i=1

(jgimj
4
� 


N
�l
2X

j=1

i6=j

jgimj
2
jgjmj

2
)km (11)

Considering that A is a full-rank matrix, the stationary

points of J
�l
2 are the points where the following gradient

vanishes

r
gi
J
�l
2 = 4(g

H
i gi)gi � 2�

�
g
�
i + 2diag(gid

T
i ) (12)

where diag(:) denotes elements into the diagonal and di is a

vector with components

dim = (jgimj
2
� 


N
�l
2X

j=1

j 6=i

jgjmj
2
)km; m = 1; :::;N

�l
2 (13)



When the separation is achieved, the vectors gi contain a

single and di�erent non-zero element. Assuming gii 6= 0; i =

1; :::;N
�l
2 and gij = 0 i 6= j, the gradient (12) vanishes when

2jgiij
2
gii(ki + 2) = 2(m

�
2si

)
�
g
�
ii; i = 1; :::;N

�l
2 )

)

(
jgiij

2 =
jm�

2si
j

ki+2
;

arg(gii) = �
arg(m�

2si
)

2
; i = 1; :::;N

�l
2

(14)

where arg(�) denotes the phase of a complex number.

The next step is to examine the positive de�niteness of

the Hessian matrix at this point to determine under which

conditions (14) is a minimum. This analysis is carried out

in appendix A and it is shown that (14) is a minimum if all

the sources have negative kurtosis and



2
>

(ki + 2)2

k2i
(15)

4 SIMULATION RESULTS

Computer simulations were carried out to illustrate the per-

formance of the proposed algorithm. We considered a 10-

elements uniform linear array whose spacing is half wave-

length. The input signals are sampled at a rate �ve times

faster that the symbol rate (i.e., fs = 0:2).

In the �rst experiment we considered the separation

of three BPSK signals with normalized carrier frequency

fc = 0:1, input Signal to Noise Rate (SNR) of 0, 5 and

10 dB and arrival angles of 50o,�50o and 0o, respectively.

These signals generate several spectral lines when they are

raised to pl = 2, being the most powerful at �l = 2fc = 0:2.

Figure 2 shows the SINR time evolution when �l = 0:2 and


 = 1:5. Figure 3 plots the results obtained when the Con-

stant Modulus (CM) function Ji =


j1� jyi(t)j

2
j
2
�
is used

[6]. We can see that both algorithms converge to the opti-

mum SINR but the proposed method is faster because the

Gaussian noise does not have non-zero cyclic moments.

In a second experiment, we considered the separation of

the four signals in table 1. The MSK modulation also gen-

erates spectral lines when it is raised to pl = 2 but these

appear in �l = 2fc � fs=2. To perform the separation, we

divided the sources into two disjoint sets S0:4
2 = fs1; s2g and

S
0:9
2 = fs3; s4g. In this case we can select w1 and w2 to

minimize

J
0:4
2 =

2X
i=1



je
2�0:4t

� y
2
i (t)j

2
�
� 2
Cum(y1; y

�
1 ; y2; y

�
2) (16)

and w3 and w4 to minimize

J
0:9
2 =

4X
i=3



je
2�0:9t

� y
2
i (t)j

2
�
� 2
Cum(y3; y

�
3 ; y4; y

�
4) (17)

Note that we only make use of two cross-terms whereas if

we use the CM cost function we would need six cross-terms.

Figure 4 plots the SINR time evolution for this second ex-

periment. It is clearly seen that it has converged to the

optimum values in less that 500 symbols.

5 CONCLUSIONS

Most existing approaches to blind source separation are

based on the use of Higher Order Statistics (HOS). In this

paper we investigate a new approach that combines HOS and

Signal Modulation Direction SNR fc �l

s1 BPSK �40o 6 dB 0.2 0.4

s2 BPSK 40o 4 dB 0.2 0.4

s3 BPSK �20o 2 dB 0.45 0.9

s4 MSK 20o 0 dB 0.5 0.9

Table 1: Experiment 1: Signals parameters
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Figure 2: Experiment 1 with proposed algorithm

cyclic moments. This way we can exploit the cyclostation-

ary nature of digital modulated signals. In particular, we can

incorporate into the algorithm information about periodici-

ties embedded in the sources such as the carrier frequency

or the symbol rate. This information enables us to obtain

simpler adaptive algorithms. We also present a stationary

point analysis and obtain convergence conditions for the al-

gorithms. Finally, computer simulations show that the rate

of convergence in the presence of noise is faster than existing

approaches.

A HESSIAN MATRIX ANALYSIS

The Hessian matrix can be decomposed as follows

HgJ
�l
2 =

�
EgJ

�l
2 SgJ

�l
2

S�gJ
�l
2 EgJ

�l
2

�
where

EgJ
�l
2 =

2
664

r
H
g1
rg1 � � � r

H
g
N
�l
2

rg1

...
. . .

...

r
H
g1
rg

N
�l
2

� � � r
H
g
N
�l
2

rg
N
�l
2

3
775

SgJ
�l
2 =

2
664

r
T
g1
rg1 � � � r

T
g
N
�l
2

rg1

...
. . .

...

r
T
g1
rg

N
�l
2

� � � r
T
g
N
�l
2

rg
N
�l
2

3
775

From (12) it is obtained

r
H
gi
rgi = 4(g

H
i gi)IN�l

2

+ 4gig
H

+ 2diag(jgi1j
2
k1 + di1; � � � ; jgiN�l

2

j
2
kN�l

2

+ d
1N

�l
2

)
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Figure 3: Experiment 1 with Constant Modulus algorithm
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Figure 4: Experiment 2 with proposed algorithm

r
H
gj
rgi = �2
diag(gi1g

�
j1k1; � � � ; giN�l

2

g
�
jN

�l
2

kN�l
2

) i 6= j

r
T
gi
rgi = 4gig

T
i � 2�

�
+ 2diag(g

2
i1k1; � � � ; g

2

iN
�l
2

kN�l
2

)

r
T
gj
rgi = �2
diag(gi1gj1k1; � � � ; giN�l

2

g
jN

�l
2

kN�l
2

) i 6= j

where IN�l
2

is the N
�l
2 �N

�l
2 identity matrix. Substituting

(14) into the Hessian matrix terms

r
H
gi
rgi = 2diag(2jgiij

2
� 
jg11j

2
k1; � � � ;

iz }| {
2jgiij

2
(ki + 2); � � � ; 2jgiij

2
� 
jgN�l

2
N

�l
2

j
2
kN�l

2

)

r
T
gi
rgi = �2diag((m

�
21)

�
; � � � ;

iz }| {
g
2
ii(ki + 2)� (m

�l
2si

)
�
; � � � (m

�l

2N
�l
2

)
�

Using a permutation matrix, it is possible to transform

HgJ
�l
2 in a block matrix with the same positive de�nite-

ness nature. The new matrix only contains non-zero blocks

into its diagonal

�ii =

2
4 @2J

�l
2

@gii@g
�
ii

@2J
�l
2

@g�
ii
@g�

ii

@2J
�l
2

@gii@gii

@2J
�l
2

@g�
ii
@gii

3
5

= 2

�
2jgiij

2(ki + 2) g2ii(ki + 2)� (m
�l
2si

)�

2(g2ii)
�(ki + 2)�m

�l
2si

2jgiij
2(ki + 2)

�

�ij =

2
4 @2J

�l
2

@gij@g
�
ij

@2J
�l
2

@g�
ij
@g�

ij

@2J
�l
2

@gij@gij

@2J
�l
2

@g�
ij
@gij

3
5

= 2

�
2jgiij

2
� 
jgjj j

2kj �(m
�l
2sj

)�

�m
�l
2sj

2jgiij
2
� 
jgjj j

2kj

�

From (14) we obtain that the diagonal terms of the Hessian

and the determinant det(�ii) = 16jgiij
4(ki+2)2, are always

positive. On the other hand, the matrix �ij reduces to

�ij = 2

2
4 2

jm�
2si
j

ki+2
� 


jm�
2sj

jkj

kj+2
�(m�

2sj
)�

�m�
2sj

2
jm�

2si
j

ki+2
� 


jm�
2sj

jkj

kj+2

3
5

It is apparent that the diagonal terms are positive if the

sources have negative kurtosis and 
 > 0. In addition, it is

easy to show that the determinant is positive when



2
>

(ki + 2)2

k2i
(18)

Therefore, the Hessian matrix at the desired stationary

points is positive de�nite if the sources have negative kurtosis

and 
 satis�es the above condition.
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