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ABSTRACT

In this paper we present a new estimate of the
propagation speed of acoustic waves propagating along a
pipe based on array signal processing, the so-called Min-
Norm Beamformer (MNB). In a previous contribution [1],
the authors had already presented the formulation of this
new estimate for narrowband signals, but the scenery of
acoustic waves uses to be broadband. Therefore, we
establish now the complete formulation of the MNB
estimate for broadband waves for the two unique possible
situations: a coherent or an incoherent processing of the
data Sample Covariance Matrix (CSM), including the most
efficient matrix transformations given in the literature
[2][3]. Finally, we present several results for three
experiments carried out in a real environment : a car
exhaust with three different engines at work.

1.  PROBLEM STATEMENT

There exist two low frequency broadband waves
propagating along a car exhaust when the engine is
working, the forward one generated by the engine, and the
backward one originated from the misadjustment of
acoustic impedances at the muffler input. Due to the large
pressures of the waves, the acoustic model of propagation is
not valid, and the propagation speed of the waves is the
sum of the sound speed and the gas flow velocity. This last
parameter depends on the instantaneous pressure of the
wave and on the position where the wave samples are
taken. This kind of waves are named finite waves and have
a non-linear model of propagation [4].

As it is explained in [5], the separation of the forward
and the backward waves propagating along the exhaust is
useful in several applications, and a good estimate of the
speed propagation is needed. On the other hand, this
parameter is fundamental for obtaining a better knowledge
of the characteristics of the engine when it is working. The
estimation of the finite waves propagation speed is a new
problem, although an approach has been tried for the
narrowband case and the linear model of propagation [1].

In this paper we present a new estimation technique
for the wideband case based on array signal processing, it
makes use of the so-called Min-Norm Beamformer (MNB).
This is a beamformer whose weight vector belongs to the
noise subspace and its matrix equation is solved by means
of the minimum norm method. The MNB is proposed for
the two main types of Covariance Sample Matrix (CSM)
for the broadband case: the coherent processing of the
particular CSM in every frequency using some kind of
transformation matrices, and the incoherent processing of
the information by using the Discrete Fourier Transform
(DFT).

Although in both formulations, coherent and
incoherent CSM processing, the MNB is based on the
acoustic model of propagation, some good results have been
obtained in the estimation of the propagation speed of finite
waves when the samples have been taken by an array of
very small aperture because, in this case, it is possible to
consider a linear propagation model.

2.  MNB FOR NARROWBAND SIGNALS

In a uniform linear array the instantaneous sensor
output is represented by the vector x(t)=A(c0)s(t)+n(t),
being A(c0) the steering matrix and c0 the propagation
speed of the sources, s(t) the source vector and n(t) the
noise vector, where its components are zero-mean, i.i.d.
circular gaussian variables.

The MNB propagation speed estimate for the
narrowband case is then formulated as [1] 
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The MNB calculates w in order to cancel the signal
contribution (AH(c)w(c) = 0) to the total output power,
P(c), but constraining the noise power to remain constant



for every speed c, i.e., Pn(c) = wH(c)σ2I w(c) = σ2|| w(c)|| =
σ2.

It can be demonstrated that for two sources
propagating along a pipe, with the same frequency, speed,
and DOAs of -90° (forward wave) and 90° (backward
wave), the weight vector of the MNB has the following
expression :
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where N is the number of sensors and d the distance
between two consecutive ones, aT(c) is the ‘truncated’
steering vector of the progressive signal, i.e., the steering
vector but where the first element has been eliminated, and
β0 and β1 are defined as

( ) ( )[ ] ( )[ ]β β π π0 0 2 2≡ =c fNd c fd csen / / sen /  and

( ) ( )[ ] ( )[ ]β β π π1 1 2 1 2≡ = −c f N d c fd csen ( ) / / sen / ,

respectively.

Consequently, the MNB has a closed formulation
given by (3) for every speed propagation, which is an
important advantage respect to the MUSIC and ML
estimates. In any case, when the number of sensors is 3, the
MNB produces ML estimates [1]. It must be also pointed
out that the MNB can be applied in a coherent scenario
without any type of previous decorrelation of the signals.
Actually, this estimate takes advantage from the fact that
the waves have the same frequency and propagation speed.

3.  THE MNB FOR BROADBAND SIGNALS

The formulation of the MNB for the broadband
coherent case depends on the transformation done to the
CSM in every frequency in order to focusing all the
information in a unique CSM at the frequency f0. In this
sense, there are two possible matrix transformations
keeping the subspace structure of the original CSMs : the
Rotational Signal Subspace Transformation (RSST) [2] and
the Signal Subspace Transformation (SST) [3]. Both
processing methods calculate a new covariance matrix,
Rx(f0), that can be respectively decomposed as the sum of a
signal subspace at the focusing frequency f0, and a noise
subspace orthogonal to the signal subspace.

The CSM for the RSS Transformation is expressed as
follows
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every frequency fk and A(f0) is the constraint matrix at the

focusing frequency f0, meanwhile the Covariance Sample
Matrix for the SST method can be written as
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Q(f0) and Q(fk) are arbitrary orthonormal matrices NxN
whose two first columns form an orthonormal basis of the
subspace generated by A(f0) and A(fk), respectively.
Consequently, the MNB for the SST and the RSST
coherent matrix transformations is formulated as in (1)-(2),
but using the focused covariance sample matrix Rx(f0).

In the broadband incoherent case, the MNB estimate
of the speed propagation is calculated as
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This formulation of the MNB tries to minimise the
arithmetic mean of the mean square error of the estimate
obtained for every frequency, in an analogous way to what
it is established in [6] for the broadband ML estimate.

The MNB for the incoherent preprocessing case
suffers from a high computational cost because the weight
vector must be calculated for every frequency bin and for
every propagation speed. However, the minimum of the
output power function, P(c), can be obtained by means of a
very efficient gradient descent method, the Newton’s
method, so the number of iterations needed is 4 or 5 at
maximum and the computational time is severely
decreased.

4.  IMPROVEMENT OF THE BROADBAND
INCOHERENT MNB ESTIMATE

The equation expressed in (6) supposes the signal and
the noise to be uncorrelated. This is true if we consider the
theoretic mean output power, but, in practice, there is a
finite number of samples and we have to work with an
estimate of the mean output power, ( )$P c .

If a delay-and-sum beamformer is used to detect a
signal, the output signal power is much larger than the
cross-correlation term between signal and noise and the
contribution of this last term is negligible. However, when
we are trying to cancel the signal as the MNB does, the
cross-correlation term is comparable to the noise power, so
the minimum of ( )$P c is achieved in another c different
from c0 causing an error in the propagation speed estimate.

To show this effect, let’s analyze the complete
expression of the estimated mean output power of the Min
Norm Beamformer, given for the propagation speed c and
at a generic frequency by
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It can be shown that the perturbation of ( )$P c
generated by the cross-covariance between signal and noise
is not negligible depending on the range of c and c0 with
respect to f and d, and on the signal-to-noise ratio (SNR) at
the beamformer input. If we define the steering angle
α=2πfd/c, we can demonstrate that when α is very small,
the curve of the mean output power P(c) is nearly flat
around c0 and the cross-covariance term has a large
influence as it can be seen in figure 1. On the other hand,
an small signal-to-noise ratio implies the same behavior of
the estimated mean output power, then causing the same
kind of error on the MNB estimate.

Therefore, the broadband incoherent MNB estimate
expressed in (6) must take into account the expression of
the mean output power estimate at every frequency given in
(7). It is necessary then to establish some criteria to
eliminate those low frequencies whose steering angle αi is
very small, and those high frequencies where the SNR is
not large enough. Doing this process previously to calculate
(6), we can assure that ( )$P c  is a good estimate of P(c) and,
consequently, $c0

 is a good estimate of c.

5.  EXPERIMENTS AND RESULTS

We present the experimental results obtained with two
different engines, the cold-flow engine, whose main
characteristic is that there is no gas flow in the propagation
of the waves, so a linear model of propagation can be

assumed, and the petrol car engine, which propagation
model is highly non-linear and its sound speed varies with
time and position. We have done two different experiments
using this last engine, one with the engine rotating at 2000
r.p.m. and another rotating at 4000 r.p.m.

Table I shows the main characteristics of the three
experiments. The distance between sensors is 5 cm for all
the experiments and the propagation speed is the theoretic
propagation speed calculated as c RT= γ , where γ is the

ratio of specific heats, R is the gas constant per unit mass
and T is the temperature [4]. Figures 2, 3 and 4 show the
cold-flow engine waveform, and the 2000 and 4000 r.pm.
petrol engine waveforms obtained at the array output,
respectively.

The propagation speed estimates are shown in table II
for six different kinds of estimators: the MUSIC estimate
for the coherent (RSST and SST-MUSIC) and incoherent
(I-MUSIC) case, and the MNB estimate for the coherent
(RSST and SST-MNB) and incoherent case (I-MNB).

It can be seen from table II that the MNB used with
the RSST and SST covariance matrices outperforms the
MUSIC estimate applied to the same matrices, meanwhile
both incoherent estimates have achieved similar results.
Some simulation results have shown that coherent methods
are very sensitive to the chosen value of the focusing
frequency, so the propagation speed estimate is not
certainly reliable.

On the other hand, the incoherent MUSIC and MNB
methods have a simpler formulation, although the
computational cost is much bigger than that of the coherent
estimates. However, the incoherent MNB can be optimized
using a Newton descent method as we have mentioned
before.

Finally, another main advantage of the MNB estimate
over the MUSIC in the incoherent case is that the analysis
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Fig. 1. Inverse of the estimated mean output power ( )$P c
and inverse of the theoretic mean output power P(c) for
α ∈ (0.025,0.049) and SNR = 50 dB. The estimated
value of c is 689 m/s and the true value is 623 m/s. Units
are linear.
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Fig. 2. Array output for the cold-flow engine.



of its simple formulation allows to find the relation between
the α and SNR parameters and the error produced for every
frequency, so it can be easily optimized in bad conditions.
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PARAMETER exp.1 exp.2 exp.3

 sound propagation speed (c0) 342 m/s 623.3 m/s 671.8 m/s

 noise power (σ2) -77 dB -57.1 dB -52.5 dB

 signal bandwidth 1.5 KHz 2 KHz 2.5 KHz

 number of sensors (N) 3 4 4

Table I. Main characteristics of the three experiments: number 1 corresponds
to the cold-flow engine and number 2 and 3 correspond to the same car engine
but with different number of r.p.m.

EXP. RSST-MUSIC SST-MUSIC I-MUSIC RSST-MNB SST-MNB I-MNB

1 332.2 (2.8) 347(1.5) 344.7 (0.8) 346.5 (1.3) 345.8 (1.1) 346.1 (1.2)

2 633.1 (1.6) 700 (12.3) 613.6 (1.5) 633.1 (1.6) 624.7 (0.2) 588.7 (5.5)

3 730 (8.7) 696.3 (3.6) 699.6 (4.1) 670.4 (0.2) 625.9 (6.8) 656.6 (2.3)

Table II. Propagation speed estimates. The figure between parenthesis is the relative error (in %)
between the estimate and the theoretic value.
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Fig. 3. Array output for the petrol engine rotating at 2000
r.p.m.
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Fig. 4. Array output for the petrol engine rotating at 4000
r.p.m.


