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ABSTRACT array from the unknown directiod® (¢), 82(), . .., 84(¢)}.
Then, the output vector of the array at the titnean be ex-

The performances of adaptive array algorithms are known to
pressed as

degrade in scenarios with moving interfering sources. Re-
cently, several robust approaches have been proposed to over- y(t) = A(t)=(t) + n(t) (1)
come this problem. Below, we compare conventional and where then x ¢ matrix

robust algorithms using shallow sea sonar data with moving

co-channel interference originated from shipping noise. This A(t) = [a(61(t)), a(62(t); - - > a(8(2))] (2)
data set was recorded by a towed horizontal Uniform Linear js composed of the time-varying interference direction vec-
Array (ULA) of 15 hydrophones. Our real data processing re- torsa(61(t)), a(8a(t)), . . ., a(8,(t)). Herea(d) is then x 1
sults demonstrate drastic performance improvements that cagjirection vector corresponding to the ange

be achieved using robust algorithms relative to conventional

adaptive beamforming techniques. 2(t) = (21(1), 22(t), - -, 24(t))”

is theg x 1 vector of random interference waveforms, &nd
1. INTRODUCTION denotes transpose. Thex 1 vectorn(t) contains random
sensor noise, and it is assumed for the sake of simplicity that
Adaptive array algorithms [1]-[4] are known to degrade in the observations (1) are performed in the absence of dignal
scenarios with moving co-channel interference [5]-[7]. Asa  Assuming that the noise is statistically independent be-
rule, this degradation occurs due to a rapid motion of interfer- tween the array sensors with the varianéewe can express

ing sources or because of array motion (e.g., towed arrays, arthen x n interference-plus-noise covariance matrix as
rays with moving platforms, etc.). Such limitation of adaptive

algorithms is especially strong for large arrays because of rel- R(t) = A()Rz A()T + 0’1 (3)
atively sharp notches of adapted pattern [5]. Recently, severa{Nh ere
robust algorithms have been proposed to overcome this prob- _ H
: . T ) Rz = E{z(t)z" (t)}

lem either via artificial widening of adaptive pattern nulls [5], _ T _
[6], or via adaptive allocation of beamformer degrees of free- iS theg x g covariance m%trlx of interference waveforniss
dom [7]. Simulation results in [5]-[7] have shown dramatic the identity matrix, and-)* denotes Hermitian transpose.
performance improvements achieved relative to conventional
(non-robust) adaptive array techniques. 3. CONVENTIONAL TECHNIQUES

Below, we compare several conventional and robust adap-
tive beamforming algorithms [5] using experimental Baltic The complex adaptive beamformer output with the weight
Sea data set. This data set was recorded by a towed horizorvectorw at the timef can be expressed as
tal ULA of 15 hydrophones in the presence of moving passive

interfering sources originating from shipping noise of several 2(t) = w(t)"y(?) (4)
moving surface ships. If the interference-plus-noise covariance maf) is kno-
wn, the optimum weight vector of the adaptive array maxi-
2. ARRAY DATA MODEL WITH MOVING mizing the Signal-to-Interference-plus-Noise Ratio (SINR) is
INTERFERENCES given by [1], [2]
wops(t) = a(t) R(t) as (5)

Assume a ULA ofn omnidirectional sensors. Let(g < n)

narrowband uncorrelated interfering sources impinge on the !If the observations contain the signal component, the techniques consid-
ered do not need any additional modification except for involving of main-

This work was supported in parts by Grant Bo 568/22-1 of DFG (Ger- lobe constraints to prevent performance degradation due to signal positioning
many) and Grant INTAS-93-642-Ext of INTAS (Belgium). errors [2], [3].
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Figure 1: Array outputs (19) vs. the snapshot indexon-
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Figure 2: Array outputs (19) vs. the snapshot indexon-

ventional beamformer is compared to the conventional andventional beamformer is compared to the conventional and
robust = 1) SMI algorithms withN = 16. robust p = 1) LSMI algorithms withN = 14.

[5], [8]- For example, the Hung-Turner (HT) algorithm [8]

whereag is the signal direction vector, ard(¢) is a norming
approximates the optimal weight vector (5) as

constant [2], which does not affect the output SINR

(10)

_ L
0'_%|'w(t)Ha,5|2 wHT(t) - Ot(t) PY(t—k)a'S

O w7 RO

(6)

where

of the beamformer (4). Po=c(cfc) e,
The Sample Matrix Inversion (SMI) and Loaded Sample

Matrix Inversion (LSMI) adaptive array algorithms both ap-

proximate the unknown matriR(t) in (5) using a sliding

window estimate. In the SMI algorithm, this estimate is given

Pa=I-Pg (11)

are the orthogonal projectors on the column space of arbitrary
n x m (n > m) full rank matrix C, and onto its orthogonal
complement, respectively.

The optimal value ofV can be derived analytically for the

b
Y . 1 = HT algorithm (10) under rather mild assumptions [9].
R(t) = NY(t — kYY" (t—k) (7)
where 4. ROBUST TECHNIQUES
Y(t—k)=[yt—k),...,yt —k+N-1)] (8) In the presence of rapidly moving (non-stationary) interfer-

ences, the sliding window estimate (7) and (8) may we very
poor since it is based on the stationarity assumption. In other
words, if the co-channel interference is highly non-stationary
at the window length then interfering sources may move away
from the sharp notches of the adapted pattern, and this may
[5]- lead to a strong degradation of the output SINR [5]. An ef-

The LSMI algorithm represents a variant of the SMI met- ficient remedy for adaptive array performance in such situ-
hod that enables the application to very short sliding windows ations is based upon artificial broadening of the null width
[4]. 1t uses a small positive diagonal load of the sample co- toward the directions of interfering sources [6]. This broad-
variance matrix to warrant the sample covariance matrix in- ening can be achieved by imposing of the so-calieda-
vertibility, i.e., dependent derivative constrair{tee [5] for details).

With these constraints up to théh order, the robust SMI

is then x N sliding window data matrixNV is the window
length, andk defines the window shift relative to the beam-
forming snapshoy(t) (see (4)). The optimal value of the
parametek depends on specific application of the algorithm

RpL(t) =4I + R(t) (9) algorithm [5] is given by
The choice ofy is discussed in [4]. wrop(t) = a(t) ﬁ‘l(t)as (12)
Another class of popular methods exploits directly the
subspace properties of data snapshots and approximates tiyghere »
matrix R~'(t) in (5) by means of orthogonal projector onto R(t) = R(t) + ZCP BPR(t)B? (13)

the subspace which is orthogonal to the interference-subspace =1
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Figure 3: Array outputs (19) vs. the snapshot inélecon-  Figure 4: Array outputs (19) vsN. Conventional beam-

ventional beamformer is compared to the conventional andformer is compared to the conventional and robpst( 1)

robust p = 1) HT algorithms withN = 4. LSMI/SMI algorithms. The outputs (19) were additionally
averaged over the snapshot inde¥or N < n, LSMI algo-

is the estimate of the covariance matrix including the data—de-mhm was used. FaN > n, SM algorithm was used.

pendent constraints, ar is then x n diagonal matrix of

sensor coordinates [5]. Usually, even the first order of con- single frequencyf = 196.25 Hz, and the interval between

straints p = 1) suffices for an improved robustness, although neighboring snapshots was chosen td Iseconds. A record

higher orders are shown to provide additional improvementsof 10 minutes duration (i.e., with 150 successive snapshots)

[6]. Under very mild conditions, the optimal values of con- was used. The co-channel interference was originated from a

straint weightg; (: = 1,. .., p) do not depend on source pa- shipping noise.

rameters (i.e., depend on the array geometry only). This fact Much more details on this experiment and experimental

is shown in [5] forp = 1 and can be proven f@r> 1 as well. data parameters may be found in [10], [11]. In particular,
The robust LSMI algorithm represents a straightforward from the analysis of covariance matrix eigenvalues in [10] it

modification of (12):

follows that there were four moving and non-moving ships
(co-channel interferences). The interference powerias

(14) 20 dB higher than that of noise in a single array sensor. The

sea depth at the experimental site was about 65 m [10].
where

RpL(t) = vI + R(2) (15)
The robust modification of the HT algorithm is given by
[6] The idea of experimental data processing was to assume some

6. REAL DATA PROCESSING

wrob(t) = a(?) PJQ(t_k)as (16) (nominal) signal directioms and to impose a mainlobe con-
where straint [2], [3] o
Q) = [Y (1), BY(),...,BPY()]  (17) whas =1 (18)
In contrast to (13), no weights (s = 1, . . ., p) are necessary for each al_gorithm tested. Then,_ to compare the performance
in (16). of conventional and robust algorithms, it is necessary to com-

pare the real (squared) outputs

|2(t)|? = |w(t)" y(t)|? (19)
The experimental site was located in the Bornholm Deep, east]cor each algorithm. The_ output (19) shows _the remaining
of Bornholm island in the Baltic Sea. The experiments were parts of the co-channel interference and noise power after

conducted by Atlas Elektronik (Bremen), in October 1983. A adaptive beamforming/rejection and, therefore, directly re-

towed horizontal hvdroohone ULA df5 sensors was used flects the performance. In other words, the lower the out-

yarop o . put (19), the better the co-channel interference is rejected.
The array parameters were as follows: interelement spacmqpn Figs.1-3, the output (19) of non-adaptive (conventional)
d = 2.56 m, sampling frequency, = 1024 Hz after low o

pass-filtering with cut-of256 Hz. The “narrowband” snap- beamformer as

shots were formed from this broadband data after DFT at the Weonw = G ag

5. DESCRIPTION OF SONAR DATA

(20)
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is compared with that of the conventional and robust SMI,
LSMI, and HT algorithms, respectively. Note that the condi- . ., ., . .« +«+ + s + « + + |
tion (18) is satisfied for (20) as well. In each figure, the max- g o
imum of the output (19) for conventional beamformer was £ = 1
normed to0 dB. The nominal signal direction assumed was g-wo 1
fs = —20°. Throughout real data processing, we assumed ?157 5 |
that each sliding window (8) was followed by the beamform- & 0
ing snapshoy(¢), i.e., the beamforming snapshot was just E’ZO’ . ° 5 7
the next one after the window. This sampling scheme corre- 2 5| ,
sponds to the particular choiée= N in (8). In Figs. 1-3, 8 © o ¢
the window lengthV of conventional/robust SMI, LSMI, and & RN o T o o o ]
HT algorithms wad 6, 14, and4 snapshots, respectively. E—ss— = 8§ ° 8
. . z * *  NON-ADAPTIVE ARRAY

Figs. 4 and 5 demonstrate the performances of different™ ,| |0 o ADAPTIVE ARRAY (CONV. HT ALGORITHM (p=0)) |
algorithms versus the sliding window length. The robust al- 00 ADAPTIVE ARRAY 5282 HT ALGORITHM ESZ%%%
gorithms withp = 1,2 have been tested. In these figures, ™% 2 6 10 12

e SLIDING WINDOW LENGTH

the outputs (19) were additionally averaged over the snapsho
indext.

Figure 5: Array outputs (19) vsN. Conventional beam-
7. DISCUSSION former is_ compared to the conventional ar?ql robpst( 1)
HT algorithms. The outputs (19) were additionally averaged

From Figs. 1-5, it follows that the performance improvements OVer the snapshot index

due to the robust algorithms are very significant. Figs 4 and
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