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ABSTRACT

The performances of adaptive array algorithms are known to
degrade in scenarios with moving interfering sources. Re-
cently, several robust approaches have been proposed to over-
come this problem. Below, we compare conventional and
robust algorithms using shallow sea sonar data with moving
co-channel interference originated from shipping noise. This
data set was recorded by a towed horizontal Uniform Linear
Array (ULA) of 15 hydrophones. Our real data processing re-
sults demonstrate drastic performance improvements that can
be achieved using robust algorithms relative to conventional
adaptive beamforming techniques.

1. INTRODUCTION

Adaptive array algorithms [1]-[4] are known to degrade in
scenarios with moving co-channel interference [5]-[7]. As a
rule, this degradation occurs due to a rapid motion of interfer-
ing sources or because of array motion (e.g., towed arrays, ar-
rays with moving platforms, etc.). Such limitation of adaptive
algorithms is especially strong for large arrays because of rel-
atively sharp notches of adapted pattern [5]. Recently, several
robust algorithms have been proposed to overcome this prob-
lem either via artificial widening of adaptive pattern nulls [5],
[6], or via adaptive allocation of beamformer degrees of free-
dom [7]. Simulation results in [5]-[7] have shown dramatic
performance improvements achieved relative to conventional
(non-robust) adaptive array techniques.

Below, we compare several conventional and robust adap-
tive beamforming algorithms [5] using experimental Baltic
Sea data set. This data set was recorded by a towed horizon-
tal ULA of 15 hydrophones in the presence of moving passive
interfering sources originating from shipping noise of several
moving surface ships.

2. ARRAY DATA MODEL WITH MOVING
INTERFERENCES

Assume a ULA ofn omnidirectional sensors. Letq (q < n)
narrowband uncorrelated interfering sources impinge on the
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array from the unknown directionsf�1(t); �2(t); : : : ; �q(t)g.
Then, the output vector of the array at the timet can be ex-
pressed as

y(t) = A(t)x(t) +n(t) (1)

where then� q matrix

A(t) = [a(�1(t));a(�2(t)); : : : ;a(�q(t))] (2)

is composed of the time-varying interference direction vec-
torsa(�1(t)), a(�2(t)); : : : ;a(�q(t)). Herea(�) is then� 1
direction vector corresponding to the angle�,

x(t) = (x1(t); x2(t); : : : ; xq(t))
T

is theq�1 vector of random interference waveforms, and(�)T

denotes transpose. Then � 1 vectorn(t) contains random
sensor noise, and it is assumed for the sake of simplicity that
the observations (1) are performed in the absence of signal1.

Assuming that the noise is statistically independent be-
tween the array sensors with the variance�2, we can express
then� n interference-plus-noise covariance matrix as

R(t) = A(t)RxA(t)H + �
2I (3)

where
Rx = Efx(t)xH (t)g

is theq� q covariance matrix of interference waveforms,I is
the identity matrix, and(�)H denotes Hermitian transpose.

3. CONVENTIONAL TECHNIQUES

The complex adaptive beamformer output with the weight
vectorw at the timet can be expressed as

z(t) = w(t)Hy(t) (4)

If the interference-plus-noise covariance matrixR(t) is kno-
wn, the optimum weight vector of the adaptive array maxi-
mizing the Signal-to-Interference-plus-Noise Ratio (SINR) is
given by [1], [2]

wopt(t) = �(t)R(t)�1aS (5)

1If the observations contain the signal component, the techniques consid-
ered do not need any additional modification except for involving of main-
lobe constraints to prevent performance degradationdue to signal positioning
errors [2], [3].
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Figure 1: Array outputs (19) vs. the snapshot indext. Con-
ventional beamformer is compared to the conventional and
robust (p = 1) SMI algorithms withN = 16.

whereaS is the signal direction vector, and�(t) is a norming
constant [2], which does not affect the output SINR

SINR(t) =
�2S jw(t)HaS j2

w(t)HR(t)w(t)
(6)

of the beamformer (4).
The Sample Matrix Inversion (SMI) and Loaded Sample

Matrix Inversion (LSMI) adaptive array algorithms both ap-
proximate the unknown matrixR(t) in (5) using a sliding
window estimate. In the SMI algorithm, this estimate is given
by

R̂(t) =
1

N
Y (t� k)Y H (t� k) (7)

where

Y (t � k) = [y(t� k); : : : ;y(t � k + N � 1)] (8)

is then � N sliding window data matrix,N is the window
length, andk defines the window shift relative to the beam-
forming snapshoty(t) (see (4)). The optimal value of the
parameterk depends on specific application of the algorithm
[5].

The LSMI algorithm represents a variant of the SMI met-
hod that enables the application to very short sliding windows
[4]. It uses a small positive diagonal load of the sample co-
variance matrix to warrant the sample covariance matrix in-
vertibility, i.e.,

R̂DL(t) = I + R̂(t) (9)

The choice of is discussed in [4].
Another class of popular methods exploits directly the

subspace properties of data snapshots and approximates the
matrixR�1(t) in (5) by means of orthogonal projector onto
the subspace which is orthogonal to the interference-subspace
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Figure 2: Array outputs (19) vs. the snapshot indext. Con-
ventional beamformer is compared to the conventional and
robust (p = 1) LSMI algorithms withN = 14.

[5], [8]. For example, the Hung-Turner (HT) algorithm [8]
approximates the optimal weight vector (5) as

wHT(t) = �(t)P?Y (t�k)
aS (10)

where

PC = C(CHC)�1CH
; P?

C = I �PC (11)

are the orthogonal projectors on the column space of arbitrary
n �m (n > m) full rank matrixC, and onto its orthogonal
complement, respectively.

The optimal value ofN can be derived analytically for the
HT algorithm (10) under rather mild assumptions [9].

4. ROBUST TECHNIQUES

In the presence of rapidly moving (non-stationary) interfer-
ences, the sliding window estimate (7) and (8) may we very
poor since it is based on the stationarity assumption. In other
words, if the co-channel interference is highly non-stationary
at the window length then interfering sources may move away
from the sharp notches of the adapted pattern, and this may
lead to a strong degradation of the output SINR [5]. An ef-
ficient remedy for adaptive array performance in such situ-
ations is based upon artificial broadening of the null width
toward the directions of interfering sources [6]. This broad-
ening can be achieved by imposing of the so-calleddata-
dependent derivative constraints(see [5] for details).

With these constraints up to thepth order, the robust SMI
algorithm [5] is given by

wrob(t) = �(t) ~R
�1

(t)aS (12)

where

~R(t) = R̂(t) +

pX

i=1

�pB
pR̂(t)Bp (13)



0 20 40 60 80 100 120 140
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

SNAPSHOT INDEX

IN
T

E
R

F
E

R
E

N
C

E
 P

O
W

E
R

 A
F

T
E

R
 B

E
A

M
F

O
R

M
IN

G
 (

D
B

)

NON−ADAPTIVE ARRAY                        
ADAPTIVE ARRAY (CONVENTIONAL HT ALGORITHM)
ADAPTIVE ARRAY (ROBUST HT ALGORITHM)      

Figure 3: Array outputs (19) vs. the snapshot indext. Con-
ventional beamformer is compared to the conventional and
robust (p = 1) HT algorithms withN = 4.

is the estimate of the covariance matrix including the data-de-
pendent constraints, andB is then � n diagonal matrix of
sensor coordinates [5]. Usually, even the first order of con-
straints (p = 1) suffices for an improved robustness, although
higher orders are shown to provide additional improvements
[6]. Under very mild conditions, the optimal values of con-
straint weights�i (i = 1; : : : ; p) do not depend on source pa-
rameters (i.e., depend on the array geometry only). This fact
is shown in [5] forp = 1 and can be proven forp > 1 as well.

The robust LSMI algorithm represents a straightforward
modification of (12):

wrob(t) = �(t) ~R
�1

DL
(t)aS (14)

where
~RDL(t) = I + ~R(t) (15)

The robust modification of the HT algorithm is given by
[6]

wrob(t) = �(t)P?

Q(t�k)
aS (16)

where
Q(t) = [Y (t);BY (t); : : : ;Bp

Y (t)] (17)

In contrast to (13), no weights�i (i = 1; : : : ; p) are necessary
in (16).

5. DESCRIPTION OF SONAR DATA

The experimental site was located in the Bornholm Deep, east
of Bornholm island in the Baltic Sea. The experiments were
conducted by Atlas Elektronik (Bremen), in October 1983. A
towed horizontal hydrophone ULA of15 sensors was used.
The array parameters were as follows: interelement spacing
d = 2:56 m, sampling frequencyfs = 1024 Hz after low
pass-filtering with cut-off256 Hz. The “narrowband” snap-
shots were formed from this broadband data after DFT at the
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Figure 4: Array outputs (19) vs.N . Conventional beam-
former is compared to the conventional and robust (p = 1)
LSMI/SMI algorithms. The outputs (19) were additionally
averaged over the snapshot indext. ForN < n, LSMI algo-
rithm was used. ForN � n, SMI algorithm was used.

single frequencyf = 196:25 Hz, and the interval between
neighboring snapshots was chosen to be4 seconds. A record
of 10 minutes duration (i.e., with 150 successive snapshots)
was used. The co-channel interference was originated from a
shipping noise.

Much more details on this experiment and experimental
data parameters may be found in [10], [11]. In particular,
from the analysis of covariance matrix eigenvalues in [10] it
follows that there were four moving and non-moving ships
(co-channel interferences). The interference power was10�
20 dB higher than that of noise in a single array sensor. The
sea depth at the experimental site was about60� 65 m [10].

6. REAL DATA PROCESSING

The idea of experimental data processing was to assume some
(nominal) signal directionaS and to impose a mainlobe con-
straint [2], [3]

wHaS = 1 (18)

for each algorithm tested. Then, to compare the performance
of conventional and robust algorithms, it is necessary to com-
pare the real (squared) outputs

jz(t)j2 = jw(t)Hy(t)j2 (19)

for each algorithm. The output (19) shows the remaining
parts of the co-channel interference and noise power after
adaptive beamforming/rejection and, therefore, directly re-
flects the performance. In other words, the lower the out-
put (19), the better the co-channel interference is rejected.
In Figs.1-3, the output (19) of non-adaptive (conventional)
beamformer

wconv =
aS

aHS aS
(20)



is compared with that of the conventional and robust SMI,
LSMI, and HT algorithms, respectively. Note that the condi-
tion (18) is satisfied for (20) as well. In each figure, the max-
imum of the output (19) for conventional beamformer was
normed to0 dB. The nominal signal direction assumed was
�S = �20�. Throughout real data processing, we assumed
that each sliding window (8) was followed by the beamform-
ing snapshoty(t), i.e., the beamforming snapshot was just
the next one after the window. This sampling scheme corre-
sponds to the particular choicek = N in (8). In Figs. 1-3,
the window lengthN of conventional/robust SMI, LSMI, and
HT algorithms was16, 14, and4 snapshots, respectively.

Figs. 4 and 5 demonstrate the performances of different
algorithms versus the sliding window length. The robust al-
gorithms withp = 1; 2 have been tested. In these figures,
the outputs (19) were additionally averaged over the snapshot
indext.

7. DISCUSSION

From Figs. 1-5, it follows that the performance improvements
due to the robust algorithms are very significant. Figs 4 and
5 enable to find an appropriate window length for different
methods in sense of performance-complexity tradeoff. The
most pronouncing improvements have been achieved for the
HT algorithm with short window lengths. However, its win-
dow length should be carefully adjusted in practice to avoid
the unnecessary degradation of performance [10]. Even for
the optimal window length for each algorithm, there are vis-
ible improvements due to the robust algorithms (more than
3� 5 dB) in Figs. 4 and 5.

From Figs. 4 and 5, it also follows that the second-order
data-dependent constraints can further improve the performa-
nce relative to the first-order constraints.

8. CONCLUSIONS

We compared conventional and robust adaptive array algo-
rithms using shallow sea sonar data with moving co-channel
interference originated from shipping noise. Our results dem-
onstrate drastic performance improvements that can be achie-
ved using robust algorithms relative to conventional adaptive
beamforming techniques. Other applications of our robust al-
gorithms are radar and wireless communications.
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