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ABSTRACT

New fast trigonometric transforms formed as combinations
of discrete parametric Pontryagin transforms and discrete
conjugate parametric Pontryagin transforms are introduced
in this paper. They include as special cases such known
orthogonal trigonometric transforms as the Fourier, Hartley,
Wang, cosine and sine, Walsh, Chrestenson transforms, and
many others. Di�erent methods of e�cient computation of
the introduced transforms are described.

1 Introduction

Discrete trigonometric (complex- and real-valued) trans-
forms such as the discrete Fourier, cosine, sine, Wang,
Chrestenson transforms and others, are widely used in many
applications of digital signal processing [13]. Some of them
are building blocks for modern unitary transforms [11, 16].
Much work has been done in generalisation of discrete

trigonometric transforms, uni�cation of the existing trigono-
metric transforms and synthesis of new such transforms pos-
sessing similar fast implementation. Among them we note
the development of a sinusoidal family of unitary transforms
by eigenvectors of tridiagonal matrices [9, 18], shifted dis-
crete Fourier transforms [17], shifted trigonometric trans-
forms [5, 6], lapped transforms and extensions [11], local
trigonometric transforms [16], and others.
In this paper we introduce a general class of parametric

trigonometric transforms, the combination of discrete para-
metric Pontryagin transforms (CDPPT).
In Section 2.1 we introduce a new class of transforms, the

combination of shifted discrete Fourier transforms (CSDFT),
and show that they unify a large class of discrete unitary
trigonometric "Fourier-like" transforms.
In Section 2.2 we �rst generalize the family of Pontryagin

transforms (transform matrix is formed as Kronecker prod-
ucts of the discrete Fourier transform matrices [14]) to para-
metric Pontryagin transforms. Then we introduce a new
class of trigonometric transforms formed as a combination
of discrete parametric Pontryagin transforms (CDPPT).
In Section 3 three methods for e�cient implementation

of introduced transforms are described, based on FFT-type
algorithms, Good's technique, and Jacobi-Givens planar ro-
tations for DCT-IV (or DST-IV) type transform matrices.

2 Combination of trigonometric transforms

2.1 Combination of Shifted Discrete Fourier Trans-
forms (CSDFT)

Let fx(n); n = 0; 1; :::; N � 1g be a real or complex data
sequence of length N: The combination of shifted discrete

Fourier transforms (CSDFT) fX(k); k = 0; 1; :::; N � 1g is
de�ned as

X(k) =

N�1X
m=0

[�1

a(k+b)(m+c)

M + �2

�a(k+b)(m+c)

M ]x(m); (1)

k = 0; 1; :::; N � 1; or in the matrix form:

X = (�1FN + �2FN )x; (2)

where 
M = exp(�i 2�
M
) is a primitive Mth root of unity,

FN = FN (M;a; b; c) = [

a(k+b)(m+c)

M ];m; n = 0; 1; :::; N � 1;
(3)

is the shifted (parametric) discrete Fourier transform matrix,
FN = FN (M;a; b; c) is the conjugate to FN ; a; b; c are real
numbers, �1 = �1(m; k) and �2 = �2(m;k) are complex-
valued functions of two variables.

In general, the CSDFTs are multiparametric nonunitary
transforms. Nevertheless, for some sets of parameters CS-
DFTs are unitary transforms. Among them are the following
known trigonometric transforms [6, 11, 15]:

1) Discrete Fourier Transform (DFT):

M = N ; a = 1; b = c = 0;�1 = 1; �2 = 0:

2) Discrete Hartley Transform (DHT):

M = N ; a = 1; b = c = 0;�1 =
1 + i

2
; �2 =

1� i

2
:

3) Discrete Wang Transforms (DWT):

M = N ; a = 1; b; c 2 f0; 0:5; 1g;�1 =
1 + i

2
; �2 =

1� i

2
:

4) Discrete cosine Transforms (DCTs):

I : M = N � 1; a = 0:5; b = c = 0;�1 = �2 =
�(m)�(k)

2
:

II : M = N ; a = 0:5; b = 0; c = 0:5;�1 = �2 =
�(k)

2
:

III : M = N ; a = 0:5; b = 0:5; c = 0;�1 = �2 =
�(m)

2
:

IV : M = N ; a = 0:5; b = c = 0:5; �1 = �2 = 0:5:

5) Discrete sine Transforms (DSTs):

I : M = N + 1; a = 0:5; b = c = 1;�1 = �2 =
i

2
:



II : M = N ; a = 0:5; b = 1; c = 0:5;�1 = �2 = i
�(k)

2
:

III : M = N ; a = 0:5; b = 0:5; c = 1;�1 = �2 = i
�(m)

2
:

IV : M = N ; a = 0:5; b = c = 0:5;�1 = �2 =
i

2
:

Here �(k) is de�ned by

�(k) =

�p
(2=N); k 6= 0p
(1=N); k = 0:

Some other particular cases of CSDFTs can be found in [6].

2.2 Combination of Discrete parametric Pontrya-
gin Transforms (CDPPT)

Let Fp be the matrix of the discrete Fourier transform of
order p:
The discrete Pontryagin-(Vilenkin-Chrestenson) trans-

form (DPT) matrix PN is de�ned as the Kronecker product
of the Fourier matrices [14]:

PN = 
n
j=1Fpj ; (4)

where N = p1 � ::: � pn is some decomposition of N . The
DPT contains as the particular cases such known transforms,
as the Walsh transform (when pj = 2, j = 1; 2; :::; n) and
the Chrestenson-(Vilenkin) transform [3] (when pj = p, j =
1; 2; :::; n).
First we will extend the DPTs to Discrete paramet-

ric Pontryagin-(Vilenkin-Chrestenson) Transforms (DPPT)
simply by replacing the kernel Fp = Fp(p; 1; 0; 0) in the
de�nition of DPT to arbitrary shifted Fourier transforms
Fp = Fp(q; a; b; c); where Fp(q; a; b; c) is de�ned by (3).
Now, let us substitute PN instead of FN in (2) to ob-

tain the combination of discrete parametric Pontryagin-
(Vilenkin-Chrestenson) transforms (CDPPTs):

X = (�1PN + �2PN )x: (5)

Let us consider the following example. Let N = 9 and
PN = F3(3; 0:5; 0:5; 0:5) 
 F3(3; 1; 0; 0); i.e. the Kronecker
product of the DCT-IV and the DFT matrices of order 3.
As the result we will get the following orthogonal matrix

(P9 + P 9)

2
=

0
BBBBBBBBB@

0:455 0:455 0:455 0:333 0:333 0:333 0:122 0:122 0:122
0:455 �0:333 �0:122 0:333 �0:455 0:122 0:122 �0:455 0:333
0:455 �0:122 �0:333 0:333 0:122 �0:455 0:122 0:333 �0:455
0:333 0:333 0:333 �0:333 �0:333 �0:333 �0:333 �0:333 �0:333
0:333 �0:455 0:122 �0:333 �0:122 0:455 �0:333 0:455 �0:122
0:333 0:122 �0:455 �0:333 0:455 �0:122 �0:333 �0:122 0:455
0:122 0:122 0:122 �0:333 �0:333 �0:333 0:455 0:455 0:455
0:122 �0:455 0:333 �0:333 0:455 �0:122 0:455 �0:333 �0:122
0:122 0:333 �0:455 �0:333 �0:122 0:455 0:455 �0:122 �0:333

1
CCCCCCCCCA
:

Note that this matrix P9 contains only 2 � 3 = 6 di�erent
elements, whereas the DCT-IV matrix F9(9; 0:5; 0:5; 0:5) of
order 9 contains 2 � 9 = 18 di�erent elements, and the Kro-
necker product F3(3; 0:5; 0:5; 0:5)
 F3(3; 0:5; 0:5; 0:5) of two
DCT-IV matrices of orders 3 contains 2 �6 = 12 di�erent ele-
ments. Moreover, the coding gains computed for the Markov
I order process with the correlation parameter � = 0:95 [11]
give the following results: 5:1448, 3:5113 and 2:4178, respec-
tively, for P9 (from this example), DCT-IV of order 9, and
the Kronecker product of two DCT-IV of order 3:

3 Fast Algorithms

There are two most popular methods of e�cient computation
of trigonometric transforms (based on the factorization of
transform matrix) via fast Fourier transform (FFT), via fast
algorithm using Good's [7] factorization technique and via
fast DCT-IV (or DST-IV) [11, 13, 15].

3.1 Fast algorithms via FFT

He we describe fast CSDFT transform via FFT algorithms.
This will give more 
exibilities to use several e�cient meth-
ods for computing DFT (see, e.g. [12]).
Let M = N = r1 � r2 � ::: � rn, 
 = 
M : The CSDFT

X = V � x of the vector x will be represented as the sum of
two transforms, the shifted discrete Fourier transform and
the shifted inverse discrete Fourier transform:

X = X1 +X2 = V1 � x+ V2 � x; (6)

where

Vj = [�j

(�1)j+1a(k+b)(m+c)

]; m; k = 0; :::; N � 1; j = 1; 2:
(7)

Each of the matrices Vj can be factorized by

Vj = �j

abc

Lj � �j �Rj ; j = 1; 2; (8)

where

Lj = diag(1; 

(�1)j+1ab

; :::; 

(�1)j+1(N�1)ab

); (9)

Rj = diag(1; 

(�1)j+1ac

; :::; 

(�1)j+1(N�1)ac

); (10)

and �j is the generalized Fourier matrix of order N , �j =

[
(�1)j+1amk]; m; k = 0; 1; :::; N:
Further factorizations of Vj matrices can be done by the

following decomposition of the matrices �j :

�j = S
T
W

(1)

j D
(1)

j W
(2)

j :::D
(n�1)

j W
(n)

j ; (11)

where
D

(k)

j = Iri+1;n+1 
Dr0;k�1rk ; (12)

W
(k)

j = Iri+1;n+1 
 [�j ]rj 
 Ir0;k�1 ; k = 1; :::; n: (13)

rk+1;n+1 = rk+1rk+2:::rn+1; r0 = rn+1 = 1; Im is the iden-
tity matrix of order m, [�j ]rj is the generalized Fourier ma-

trix of order rj ; j = 1; 2; ST is a transposed matrix to the
generalized bit-reversal matrix [12].
Let us show an example of the fast algorithm for the CS-

DFT with parameters N = M = 6; a = 0:5; b = 0; c =



0:5; �1 = �2 =
�(k)

2
(which is corresponding to the case of

DCT-II). By the formulas (2)-(9) we have

V =
�

2
L1�1R1 + L2�2R2:

Substituting parameters to the formulas we obtain, L1 =
L2 = I;

R1 = diag(1; 

1=4

; 

1=2

; 

3=4

; 
; 

5=4

); R2 = R
�

1;

�1 = S
T
([I]3 
 [�j ]2)diag([I]2; (1; 
); (1; 


2
))([�j ]3 
 [I]2);

�2 = ��1 ; where [I]k is the identity matrix of order k,

[�1]2 =

�
1 1
1 i

�
; [�2]2 = ([�1]2)

�

;

[�j ]3 =

 
1 1 1
1 
 


2

1 

2




!
:

For factorization of the matrices �j (and, therefore, the
matrices V1 and V2) one can use an algorithm of Winograd
[12].

3.2 Fast algorithms via Good's technique

The Good's theorem plays an important role in e�cient com-
putation of many orthogonal transforms. Let a square ma-
trix H of order N = N1N2:::Nk be represented as the Kro-
necker product of k matrices V(j) of order Nj ; j = 1; 2; :::; k;

i.e. H = V(1) 
V(2) 
 :::
V(k)
: Then, by Good's theorem

there exists a way of representing H as a product of k sparse
matrices:

H =

kY
j=1

H
(j)
;

where

H
(j)

= I(M(j)) 
V
(j) 
 I(L(j)); j = 1; 2; :::; k;

I(n) is the identity matrix of order n; M(j) =
Nj+1Nj+2 � � �Nk and L(j) = N1N2 � � �Nj�1:

Note, that the planar mapping of the kernel of n-
dimensional separable Fourier transform have the form of
the Chrestenson matrix, and, therefore, can be computed
e�ciently by applying Good's theorem as well as the decom-
position of the Fourier transform kernel. This idea was used
in the derivation of fast multidimensional discrete Fourier
transform algorithms [2].

We can use the Good's technique with the FFT-type al-
gorithms (introduced in the previous section) for fast imple-
mentation of CDPPTs.

3.3 Fast algorithms via fast DST-IV or DCT-IV

Most of the discrete trigonometric transforms can be de-
composed to DCT-IV or DST-IV or similar transforms
[11, 13, 15]. Therefore, we need to have fast algorithms for
one of this transformations.

Here we will present a decomposition of the DST-IV ma-
trix S

IV
N = FN (N;

i
2
; 0:5; 0:5) using the Jacobi-Givens rota-

tions.

Let rot

�
'm j km; lm

�
:=

�
cos'm sin'm

� sin'm cos'm

�
km;lm

be the elementary Jacobi-Givens rotation in 2D coordinate
plane (ekm ; ekl) of the signal space V(e0; e1; :::; eN�1): We

use sequential method of decomposition of SIYN using �nite
sequence of elementary Jacobi-Givens rotations:

[S
IY
N ]m = rot

�
'm j km; lm

�
� [SIYN ]m�1;

wherem = 0; 1; :::; t; [SIYN ]0 := S
IY
N ; [SIYN ]t = IN : The angles

'm are determined so that Skm;lm = Slm;km = 0; where
[SIYN ]m; = [Skm;lm ] :

We start with S
IY
2 . Obviously,

S
IY
2 =

�
s1;1 s3;1

s3;1 �s3;1

�
;

where si;j := sin(i�=2j+2): For the decomposition to S
IY
2

we need to make one rotation rot('1j1; 2); where '1 =
arctg(s1;1=s3;1) = ��=8:
Let us move to 4� 4-transform matrix

S
IY
4 :=

2
64

s1;2 s3;2 s5;2 s7;2

s3;2 s7;2 s1;2 �s5;2
s5;2 s1;2 �s7;2 s3;2

s7;2 �s5;2 s3;2 �s1;2

3
75 :

Taking
pair of rotations ROT('1; '2) := rot('1j1; 4)rot('2j2; 3) as
the two �rst iterations of decomposition and de�ning angles
by the �rst basis vector: '1 = �arctg(s1;2=s7;2) = ��=16;
'2 = �arctg(s3;2=s5;2) = �3�=16; we obtain

[SIY4 ]2 = rot('1j1; 4)rot('2j2; 3)[SIY4 ] =

=

p
2

2

2
64

1 1
d d d �d
d d �d d

1 �1

3
75
T

;

where d :=
p
2=2: Next two pair of rotations give

[S
IY
4 ]4 = rot('3j1; 2)rot('4j3; 4)[SIY2 ] =

=

p
2

2

2
64

2p
2 �

p
2p

2
p
2

�2

3
75
T

:

After rotation rot('5j1; 4) we will have a permutation matrix
[SIY5 ]4 = rot('5j1; 4)[SIY4 ] =

=

2
64

1
�1

1
�1

3
75 = P4:

Consequently up to the permutation matrix S
IY
4 :=

= P

2
64
c1;2 s1;2

s3;2 s3;2

s3;2 s3;2

s1;2 c1;2

3
75
2
64
1 �1
1 1

1 1
1 1

3
75�

�

2
64

1 1
1

1
�1 1

3
75
2
64
d
2

d

d

d
2

3
75 :



Similarly, decompositions are found for any N = 2n: For
example, for N = 8 we have SIYN =

=

2
666666664

c1;3 s1;3

c3;3 s3;3

c5;3 s5;3

c7;3 s7;3

s7;3 c7;3

s5;3 c5;3

s3;3 c3;3

s1;3 cs1;3

3
777777775
�

�

2
666666664

1 �1
1 �1
1 1

1 1
1 �1

1 �1
1 1

1 �1

3
777777775
�

�

2
666666664

c1;1 s1;1

s1;1 c1;1

1 �1
1 1

1 �1
1 1

c1;1 s1;1

s1;1 c1;1

3
777777775
�

�

2
666666664

1 �1
1 1

1 1
1

1
�1 1

1 1
�1 1

3
777777775
�

�diag(d2; d2; d3; d2; d2; d3; d2; d2):
In the general case, decomposition of SIYN is formed as a

product of n XN -type matrices (e.g. X-shape matrices in the
decompositions of SIV4 and SIV8 ) and ]n=2[ Hn-type matrices
(e.g. seconds from the last matrices in the decompositions
of SIV4 and S

IV
8 ):

S
IY
N =

nY
i=1

X
i
2n �

]n=2[Y
i=1

Hi
2n ;

where ]x[ is the integer part of the number x;

X
i
2n =8>>>>><

>>>>>:

Q2n�1

k=1
rot

�
2k�1

2n+1
�

���k; 2n � k + 1

�
; if i = n;Q2n�2

k=1
rot

�
�pi

4
�

���k; 2n�1 � k + 1

�
�

�
Q2n�2

k=1

�
rot

�pi

4
�

���k; 2n�1 � k + 1

�
; if i = n� 1;

X
i
2n�2

�X
i
2n�1

�X
i
2n�2

if i < n� 1;

Hi
2n := Hi�1

2n�2
�Hi

2n�1 �Hi�1

2n�2
;

where i = 2; 3; : : : ]n=2[ ; Hi
2n = I2n ; if i > ]n=2[ +1, i.e.

H1
20

= 1; H1
21

= I21 ; H2
22

= I22 ; etc.
The complexity of the described algorithm is the same

as the complexity of fast DCT-IV algorithm using the FFT
[11] (N(n+2)=2 multiplications and 3Nn=2 additions) which
gives the lowest achivable complexity for this transform [11].
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