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ABSTRACT

The fractional Fourier transform (FRFT) is a one-
parametric generalization of the classical Fourier trans-
form. Since it's introduction in 1980th, the FRFT has
been found a lot of applications and used widely nowa-
days in signal processing. Space and spatial frequency
domains are the special cases of the fractional Fourier
domains. They correspond to the 0th and 1st fractional
Fourier domains, respectively. In this paper, we briey
introduce the multi-parametrical FRFT and its fast al-
gorithm.

1 Introduction

Fourier analysis is one of the most frequently used tools
in signal processing and in many other scienti�c disci-
plines. In the mathematical literature a generalization
of the Fourier transform known as the fractional Fourier
transform F� (FRFT), was proposed some years ago. It
is known [3]-[6], that classical FFT is particular case of
FRFT. Fourier space and spatial frequency domains are
special cases of fractional Fourier domains. They corre-
spond to the �th fractional Fourier domains (� = 0 and
� = 1; respectively). In 1937, Condon wrote a paper
called "Immersion of the Fourier transform in a contin-
uous group of functional transformation" [1]. In 1961,
Bargmann extended the FRFT in his paper [2], in which
he gave de�nition of the FRFT, one based on Hermite
polynomials as an integral transformation. If Hn(

p
2�t)

is a Hermite polynomial of order n then functions

	n(t) =
21=4p
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Hn(
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2�t) exp(��t2)

for n = 0; 1; 2; : : :are eigenfunctions of the Fourier trans-
form
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2�t�dt = �n	n(t);

with �n = in being the eigenvalue corresponding to the
nth eigenfunction and form the orthonormal set of func-
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According to Bargmann the FRFT F� := [F�(!; t)] of
order � may be de�ned through its eigenfunctions

F�(!; t) :=
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where F�(!; t) is the kernel of the FRFT.
Obviously, the functions 	n(t) are eigenfunctions of

FRFT
F�[	n(t)] = ��n	n(t);

corresponding to the nth eigenvalues ��n:
Of course, for � = 1; F1(!; t) = ei!t: If 0 < jaj < 2

and � := 2'=�; then
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In 1980, Namias reinvented the FRFT again in his pa-
per [3]. This approach was extended by McBride and
Kerr [4]. The FRFT was restricted to pure mathemat-
ical purposes. Very few publications appeared. Then
Mendlovic and Ozaktas introduced the FRFT into the
�eld of optics [5] in 1993. Afterwards, Lohmann [6]
reinvented the FRFT based on the Wigner-distribution
function and opened the FRFT to bulk-optics applica-
tions. The Wigner-distribution of a function f(t) is de-
�ned as

Wf (t; !) :=

Z
f(t +

�

2
)f�(t+

�

2
)exp(�2i��!)d�:

There is a following relationship between the fractional
FRFT and Wigner-distribution a function f(t) :

WF�[f ](t; !) = Wf (t cos'� ! sin'; t sin'+ ! cos');



i.e. FRFT is a rotation operation applied over the
Wigner plane. This relationship has been proposed as
the de�nition of FRFT by Lohmann in [6].
In this paper we briey introduce the multi-

parametric FRFT and develop corresponding fast algo-
rithm.

2 Multi-parametric fractional Fourier trans-

form

Discrete Fourier transform (DFT) F of the lenght N is
de�ned by

F (k) :=
1

N

N�1X
n=0

f(n)e
2�
N
nk;

where f(n) is the signal of the lenght N from the sig-
nal vector space VN (e0; e1; : : : ; eN�1); spaned on natu-
ral basis e0; e1; : : : ; eN�1: In operator notation we write
F = Ff : DFT has characteristic equation �4 = 1 since
F4 = I; where I is identity operator. Consequently, the
DFT F has only four eigenvalues in the form of solu-
tions equations �4 = 1 : �(k) = ej

2�
4
k; k = 0; 1; 2; 3: If

N = 2n; then this eigenvalues has multiplicities 2n�2+1;
2n�2 � 1; 2n�2; 2n � 2; respectively.
The Hermite polynomials Hn(

p
2�t) (but not 	n(t))

form a set that is orthonormal with respect to the weight
function

w(t) = exp(�2�t2) = exp

0
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:

It is well known that the discrete counterpart of a
Gaussian window is a binomial window, i.e.

w(i) =
1

2N
Ci
N

for i = 0; 1; : : : ; N: The (discrete) orthonormal polyno-

mials that are associated with this window are known
as Krawtchouk's polynomials
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for i; n = 0; 1; : : : ; N; i.e.
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The functions  n(i) :=

r
Ci
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N

Kn(i) form the set of

the eigenvectors of DFT:

F [ n(i)] = �n n(t):

For large values of N , the binomial window reduces
to a Gaussian window. More speci�cally,
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for t = �(N=2); : : : ; N=2: It can be shown that the same
limiting process turns a Krawtchouk polynomial into a
Hermite polynomial, i.e.

lim
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Hence, the discrete Hermite transform of lenght N

approximates the analog Hermite transform of spread
� =

p
N=2:

Let U = [u0;u1; : : : ;uN�1] be the matrix of eigenvec-
tors of an discrete Fourier transform F ; then

UFU�1 = diagf�(k)g

and

F = U
�1diagf�(k)gU:

De�nition 1 Let �0; �1; : : : ; �N�1 be arbitrary real
numbers from [0; 1]; then

F�0;�1;:::;�N�1 :=

= U
�1
�
diag(��00 (k); ��11 (k); : : : ; �

�N�1
N�1 (k))

	
U (2)

is called the multi-parametric fractional Fourier trans-

form (MFRFT).

The set of all multi-parametric fractional F-
transforms form Abelian group (R=4) � (R=4) � : : : �
(R=4); since

F�0;�1;:::;�N�1F�0;�1;:::;�N�1 =

= F�0��0;�1��1;:::;�N�1��N�1 ;

where � is the symbol of addition modulo 1. If �i = �;

8i = 0; 1; : : : ; N � 1; then F�0;�1;:::;�N�1 = F� is the
classical fractional Fourier transform.

According to de�nition 1 e�cient calculation of (1)
require fast computational algorithm for transformation
by U matrix (U-transform).

3 Fast U-Transform for DFT

Let Rot
h
'm j km; lm

i
:=

�
cos'm sin'm

� sin'm cos'm

�
km;lm

by elementary Jacobi-Givens rotation in 2-D coordinate
plane (ekm ; ekl) of the signal space V(e0; e1; :::; eN�1):
In this paper we use sequential method for reduction of
the classical Fourier transform using �nite sequence of
elementary Jacobi-Givens rotations:

F(m) :=

= Rot

h
+ 'm j km; lm

i
� F(m�1) �Rot

h
� 'm j km; lm

i
;



where m = 0; 1; :::; S; F(0) := F ; F(S) = diagf�(k)g:
The angles 'm are determined so that w

(m)

km;lm
=

w
(m)

lm;km
= 0; where F(m) :=

h
w
(m)

km;lm

i
:

Matrix F (without the �rst column and �rst row) are
centro-symmetric (persymmetric or double symmetric).
Therefore it is block-diagonalized by N

2
� 1 rotations of

matrix X�0;N :=

0
@p2Rot�0o j 0; N
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2
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where � is diagonal matrix, consisting of only +1 and
�1, CN

2
+1; SN

2
�1 are discrete cosine and sine trans-

forms, respectively, and I is the antidiagonal matrix.
Transforms CN

2
+1 and SN

2
�1 are centro-symmeric

and they are block-diagonalized by N
2
� 1 rotations of

matrix X�
1;N

2
�1

= X
�
0;N

4
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�X�
1;N

4
�1
: After N � 2 rota-

tions we obtain the matrix

F(N�2) = X
�
1;N

2
�1
F(N

2
�1)X

�
1;N

2
�1
;

which is reducible to block-diagonal form.

Example 1 Let N = 8 then

F(3) = X
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0
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�
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Thus, we have to do three rotation into planes (e1; e2);
(e3; e4); (e7; e8); in order to obtain scalar-diagonal ma-
trix F9 � diag(1;�1; 1;�1;�j; j;�j): These rotations
are T4

8 =

=

p
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2
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�
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where Ck
m := cos( k�

2m
); Skm := sin( k�

2m
); d =

p
2
2
:

Finally, as an example, we give the matrix representa-
tion of fast transform for N = 16 :
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Similar expressions were found for U-transforms of
lengths until 256.
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