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SUMMARY

Most orthogonal signal decompositions, including block

transforms, wavelet transforms, wavelet packets, and perfect

reconstruction filterbanks in general, can be represented by a

paraunitary system matrix.  Here, we consider the general

problem of finding the optimal P x P paraunitary transform that

minimizes the approximation error when a signal is

reconstructed from a reduced number of components Q<P.  This

constitutes a direct extension of the Karhunen-Loeve transform

which provides the optimal solution for block transforms

(unitary system matrix).  We discuss some of the general

properties of this type of solution. We review different

approaches for finding optimal and sub-optimal decompositions

for stationary processes. In particular, we show that the solution

can be determined analytically in the unconstrained case. If one

includes order or length constraints, then the optimization

problem turns out to be much more difficult.

1. INTRODUCTION

Transform domain processing is a powerful concept that is

used in many signal processing algorithms. There are three

major application areas where transforms are commonly used in

image processing [13]. The first and most obvious one in data

compression which capitalizes on the energy compaction

properties of some classes of linear transforms; in particular, the

DCT [17]. The second is data processing; for example,

generalized filtering for noise reduction. The main property that

is exploited there is that the underlying signal tends to get

concentrated into few coefficients while the noise is spread out

more evenly.  Hence, working in the transform domain has the

advantage of increasing the signal-to-noise ratio. The third

application is data analysis; for example, feature extraction.

Here we are interested in transform methods that are local

so that the processing can be adaptive [27]. The simplest

approach is to subdivide the signal into adjacent non-

overlapping blocks of size P, and to apply a unitary transform to

each block.  A possible refinement is to allow for overlapping

basis functions which can be achieved using lapped orthogonal

transforms [10]. These approaches can also be viewed as

subband decompositions.  Another very natural way to achieve

locality is to use a wavelet transform which provides a

hierarchical multiscale decomposition of a signal [9, 15, 23].

The wavelet transform provides a constant Q subband

decomposition where each channel is approximately one octave

wide. By choosing to chain the wavelet filters differently, one

can also generate a whole variety of wavelet packets

corresponding to different tillings of the time-frequency plane

[24].

What these approaches have in common is that they can all

be viewed as special cases of a critically sampled perfect

reconstruction filter bank (PRFB)[22, 19].  A schematic

representation of such a system is  shown in Fig. 1.  If the

synthesis filters are such that ˜ ( ) ( )H z H zi i= −1 , then the system

is lossless and defines an orthogonal transform of the input

signal.  Such a transform is entirely characterized by a P×P

paraunitary system matrix H( )z . It is therefore of interest to

characterize paraunitary transforms that are optimal in the sense

that they minimize the approximation error when the signal is

reconstructed from a reduced number of components Q<P.  In

the simplest case in which the filters are non-overlapping

(standard block transform), the solution is the Karhunen-Loève

transform (KLT).  The purpose of this paper is to extend this

analysis to the more general paraunitary case and review signal-

adapted solutions for stationary processes.
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Fig. 1 : Block diagram of a P-band paraunitary PRFB.
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Fig. 2: Polyphase representation of a P-band wavelet analysis filterbank.

2. POLYPHASE REPRESENTATION

Most wavelet transforms and filterbank decomposition

algorithms can be conveniently described as a multivariate

filtering operation using the so-called polyphase representation

[23].  The corresponding filterbank system is shown in Fig. 2.

In this diagram, x(k) represents the input signal and the y's are

the various wavelet channels or subband components. In the

standard dyadic case, there are only two channels (P=2), but the

concept is also valid for larger values of P (P-band perfect

reconstruction filterbank) [19, 22].  It turns out that the

transformation is orthogonal if and only if the P×P transfer

function matrix H( )z  satisfies the paraunitary condition:

H H I( ) ( )z zT
P⋅ =−1 , (1)

where IP  is the P×P identity matrix. Note that for traditional

block transforms, the matrix H( )z  does not depend on z (i.e.,

the various blocks are processed independently of each other).

3. OPTIMAL FILTER BANKS

Let us now consider the specification of the optimal filterbank

for the decomposition of a signal x(k), k∈ Z, which is a

realization of a wide sense stationary process with covariance

cxx(l), l∈ Z .  The covariance entries for the equivalent P-variate

blocked representation   x( ) ( ), , ( )k x kP x kP P= − +( )L 1  are

given by

Cxx i j xxl c Pl i j( ) ( )
,[ ] = + − (2)

For a lossless (or paraunitary) system, we have

trace[ ( )] trace[ ( )]C Cyy i
i

P

xx0 02

1

= = =
=
∑σ const (3)

where Cxx(l) and Cyy(l) are the covariance matrix sequences of

the input and output vector signals x(k) and y(k), respectively,
and where σi yy i i

2 0: [ ( )] ,= C  represents the variance of the ith

component.

The relation between the input and output covariance

matrices is most conveniently described in the z-transform

domain:

ˆ ( ) ( ) ˆ ( ) ( )C H C Hy x
Tz z z z= ⋅ ⋅ −1 . (4)

where ˆ ( ) ( )C Cx xx
k

k Z
z k z= −

∈∑  and ˆ ( ) ( )C Cy yy
k

k Z
z k z= −

∈∑  are

the P×P matrix z-transforms of Cxx(l) and Cyy(l), respectively.

The crucial parameters for an analysis using a paraunitary

P-band filterbank are the channel variances σi
2, i=1,…,P,

which correspond to the diagonal terms of the output covariance

matrix Cyy(0).  Because the system is lossless (cf (3)),  the

approximation error that results from the transmission of Q<P

bands instead of P is simply

ε σQ i
i Q

P
2 2

1

=
= +
∑ . (5)

We can therefore define the optimal filterbank as the one that

minimizes the error for any number of bands Q<P.  This

definition is essentially the same as that of the KLT, except that

the present analysis system is more general than a simple unitary

matrix.  Such a transformation is also optimal under a variety of

other criteria; for instance, any general performance index of the

form

ξ σf i
i

P

f=
=
∑ ( )2

1

, (6)

where f(.) is a continuous function that is monotonously

increasing convex or decreasing concave [17]. A performance

measure widely used for coding applications is the transform

coding gain [6]
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which is an indicator of the SNR improvement that is obtained

by applying an optimal separate quantizer for each component,

as compared to coding the initial signal values directly.  Note

that (7) is a particular case of (6) with f a a( ) log( )⋅ = − ⋅0 1 .

In our determination of the optimal filterbank, we will

have to distinguish between two cases depending on whether or

not we impose length or order constraints on our filters.  It turns

out that the unconstrained solution is tractable mathematically

but leads to IIR solutions that are difficult to implement in

practice (ideal filters).  For practical applications, it is usually

more appropriate to constrain the solution to be FIR (filterbank

of degree N).  Unfortunately, there is no corresponding

analytical solution and the optimization has to be performed

numerically.  Before considering these solutions, we will briefly

identify some of their properties.

Property 1 : An optimal P-band filterbank (constrained or

unconstrained) will generally outperform the KLT with a

block size P.



This property follows directly from the fact that the simplest P-

band filterbank (degree zero) is a unitary transform with block

size P : H U0 0( )z = , which includes the KLT as a special case.

In general,  there are more degrees of freedom than in the case

of an orthogonal transform, and the different components of the

system can be optimized for improved performance.

Property 2 : An optimal P-band filterbank (constrained or

unconstrained) will result in uncorrelated components.

Proof : Let Cyy(0) be the PxP covariance matrix (at lag l=0) of

the optimally filtered vector y.  If the non-diagonal components

of this covariance matrix are non-zero, we can apply an

additional orthogonal transformation to diagonalize this matrix,

which will result in some performance improvement (without

increasing the order of the system).  This is in contradiction with

the initial assumption of optimality, which proves the desired

result.

It is important to note that unlike the case of orthogonal P-

block transforms (KLT), decorrelatedness is no longer a

sufficient condition for optimality.

4. UNCONSTRAINED SOLUTIONS

For simplicity, we will only describe the solution for the

two channel case in detail following the treatment given in [18].

For the more general P-band case, we refer to the independent

work of Tsatsanis and Giannakis  who arrived at the solution

using an elegant principal component formulation in the

frequency domain [16].

For P=2, the determination of the optimal filterbank is

simplified because it is sufficient to consider one branch only.

In other words, the optimal solution can be obtained by

maximizing (resp. minimizing) the energy in the lowpass  (resp.

highpass) branch. For the system to be lossless, the

corresponding lowpass filter in Fig. 1 must satisfy the standard

power complementary  condition [14]

H e H ej f j f
1

2 2

1
2 2

2( ) ( )π π+ − = . (19)

The highpass filter is simply obtained by modulation :

H z zH z2 1
1( ) ( )= − − . The optimal filterbank is then specified as

follows:

Theorem 1 : For a stationary process with (univariate)

spectral power density (SPD) C exx
j f( )2π , the optimal

decomposition is obtained with the ideal filter
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fj f
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Thus the optimal solution corresponds to an ideal half-band

decomposition whenever the SPD is such that

C e C e fxx
j f

xx
j f( ) ( ),  ,( )2 2 1

40π π +π≥ ∀ ∈[ ].  In particular, this

condition is satisfied when C exx
j f( )2π  is a non-increasing

function of f.  The half-band decomposition is therefore optimal

for the whole class of Markov-1 processes.

Interestingly, there are a number of wavelet transform

constructions that converge asymptotically to this limit.  The

better known example is the family of Battle-Lemarié spline

wavelets which converge to an ideal bandpass filter as the order

of the spline goes to infinity [8, 1].  Daubechies wavelets also

exhibit similar convergence properties [3]. This partially

explains why higher order wavelets usually result in smaller

approximation errors.

Since most signals encountered in practice tend to be

predominantly lowpass, these results provide a good

justification for the standard QMF design techniques which aim

at obtaining a filter H1 with good lowpass characteristics [21,

25, 20, 5].

For P>2, the solution is similar and depends on the

spectral characteristics of the input signal [16]; it has also the

form of an ideal filter with pure "on" and "off" frequency bands.

If the power spectral density is monotone, then the optimal

solution is the ideal filterbank with P uniformly-spaced

subbands.

These theoretical results would suggest that the use of an

adaptive design may not offer any substantial advantages, at

least for the class of stationary processes satisfying the condition

identified above. In practice, this is only partially true because

the total complexity of the system is usually limited. For filters

with a fixed number of taps, the use of a signal-dependent

approach will in general provide better performance because it

has the capacity to adapt its limited resources to the spectral

characteristics of the input signal. Another potential

disadvantage of using ideal filters (or some close

approximations) is that they may induce ringing artifacts. They

also require more computations.

Perhaps, the most interesting application of this theorem is

to provide an asymptotic performance limit that is easy to

calculate and that can be used to access the performance of

suboptimal (or constrained) decompositions of the type

considered next.

A final remarkable property of ideal filterbank solutions is

that the output components are uncorrelated over all time lags.



This is much stronger than the component-wise decorrelation of

the KLT which only holds at a given instant k.

5. CONSTRAINED DESIGN

Despite their optimality in terms of decorrelation and energy

compaction, the ideal filter solutions that have just been

described are not particularly useful for implementation

purposes (slowly decaying impulse responses, Gibbs

oscillations). This provides a good motivation for investigating

more constrained solutions.  Unfortunately, there appears to be

no general closed form solution as soon as one forces the filters

to be FIR (order constraint). This type of constrained design

gives rise to a rather difficult numerical optimization problem.

This is still a very active area of research; it started with the

work of Delsarte et al. [4], and Caglar et al. [2].  Recently, there

seems to have been some progress in designing optimum FIR

compaction filters thanks in part to the use of more sophisticated

optimization techniques. Moulin et al. [11, 12] have obtained

optimized filters from the spectral factors of the solution of a

semi-infinite programming problem (SIP). Xuan and Bamberger

[26] have investigated the design of 2D principal component

filters and proposed an optimization technique that uses

sequential quadratic programming (SQL). Kirac and

Vaidyanathan [7] were able to give an analytical FIR solution for

a restricted class of random processes in the two channel case.

They also proposed suboptimal design techniques for the P-

band case. While there are now several design methods

available, the problem is not closed yet. There is still room for

finding a simple and universal design method that is more

directly applicable in practice. There are also many underlying

issues that are not fully resolved.

References
[1] A. Aldroubi and M. Unser, "Families of multiresolution and wavelet

spaces with optimal properties," Numerical Functional Analysis and
Optimization, vol. 14, no. 5-6, pp. 417-446, 1993.

[2] H. Caglar, Y. Liu and A.N. Akansu, "Statistically optimized PR-
QMF design," in Proc. SPIE Visual Communication and Image
Processing, 1991, 86-94.

[3] I. Daubechies, "Orthogonal bases of compactly supported wavelets,"
Comm. Pure Appl. Math., vol. 41, pp. 909-996, 1988.

[4] P. Desarte, B. Macq and D.T.M. Slock, "Signal-adapted
multiresolution transform for image coding," IEEE Trans.
Information Theory, vol. 38, no. 2, pp. 897-904, 1992.

[5] V.K. Jain and R.E. Crochiere, "Quadrature mirror filter design in the
time domain," IEEE Trans. Acoust. Speech Signal Processing, vol.
ASSP-32, no. 2, pp. 353-361, 1984.

[6] N.S. Jayant and P. Noll, Digital coding of waveforms. Englewood
Cliffs, NJ: Prentice-Hall, 1984.

[7] A. Kirac and P.P. Vaidayanathan, "Theory and design of optimum
FIR compaction filters," IEEE Trans. Signal Processing, vol. 46,
no. 4, pp. 903-919, 1998.

[8] P.-G. Lemarié, "Ondelettes à localisation exponentielles," J. Math.
pures et appl., vol. 67, no. 3, pp. 227-236, 1988.

[9] S.G. Mallat, "A theory of multiresolution signal decomposition: the
wavelet representation," IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-11, no. 7, pp. 674-693, 1989.

[10] H.S. Malvar, "Lapped transforms for efficient transform/subband
coding," IEEE Trans. Acoust. Speech Signal Processing, vol. 38,
pp. 969-978, 1990.

[11] P. Moulin, M. Anitescu, K.O. Kortanek and F. Potra, "The role of
linear semi-infinite programming in signal-adapted QMF bank
design," IEEE Trans. Signal Processing, vol. 45, pp. 2160-2174,
1997.

[12] P. Moulin and M.K. Mihcak, "Theory and design of signal-adapted
FIR paraunitary filter banks," IEEE Trans. Signal Processing, vol.
46, no. 4, pp. 920-929, 1998.

[13] W.K. Pratt, Digital image processing. New York: Wiley, 1978.

[14] M.J.T. Smith and T.P. Barnwell, "Exact reconstruction for tree-
structured subband coders," IEEE Trans. Acoust. Speech Signal
Processing, vol. ASSP-34, pp. 423-441, 1986.

[15] G. Strang and T. Nguyen, Wavelets and filter banks. Wellesley,
MA: Wellesley-Cambridge, 1996.

[16] M.K. Tsatsanis and G.B. Giannakis, "Principal component filter
banks for optimal wavelet analysis," IEEE Trans. Signal Processing,
vol. 43, no. 8, pp. 1766-1777, 1995.

[17] M. Unser, "On the Approximation of the Discrete Karhunen-Loève
Transform for Stationary Processes," Signal Processing, vol. 7, no.
3, pp. 231-249, 1984.

[18] M. Unser, "On the optimality of ideal filters for pyramid and wavelet
signal approximation," IEEE Trans. Signal Processing, vol. 41, no.
12, pp. 3591-3596, 1993.

[19] P.P. Vaidyanathan, "Quadrature mirror filter banks, M-band
extensions and perfect-reconstruction technique," IEEE ASSP Mag.,
vol. 4, pp. 4-20, 1987.

[20] P.P. Vaidyanathan and P.-Q. Hoang, "Lattice structures for optimal
design and robust implementation of two-channel perfect-
reconstruction QMF banks," IEEE Trans. Acoust. Speech Signal
Processing, vol. 36, pp. 81-94, 1988.

[21] M. Vetterli, "Multi-dimensional sub-band coding: some theory and
algorithms," Signal Processing, vol. 6, no. 2, pp. 97-112, 1984.

[22] M. Vetterli, "A theory of multirate filter banks," IEEE Trans.
Acoust. Speech Signal Proces., vol. ASSP-35, no. 3, pp. 356-372,
1987.

[23] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding.
Englewood Cliffs, NJ: Prentice Hall, 1995.

[24] M.V. Wickerhauser, "Acoustic signal compression with wavelet
packets," in Wavelets: A tutorial in theory and applications, C.K.
Chui, Ed., New York: Academic Press, 1992.

[25] J.W. Woods and S.D. O'Neil, "Sub-band coding of images," IEEE
Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 1278-
1288, 1986.

[26] B. Xuan and R.H. Bamberger, "FIR principal component filter
banks," IEEE Trans. Signal Processing, vol. 46, no. 4, pp. 930-940,
1998.

[27] L.P. Yaroslavsky, Digital Picture Processing. New York: Springer,
1985.


