
FAST ALGORITHMS FOR REDUCTION A
MODULO POLYNOMIAL AND VANDERMONDE

TRANSFORM USING FFT*

ALEXANDER M. KROT, HELENA B.MINERVINA

Institute of Engineering Cybernetics, National Academy of Sciences of Belarus,
 Surganov Str. 6, 220012, Minsk, Belarus, alxkrot@newman.basnet.minsk.by

Abstract. This paper shows on how the real algorithms for the reduction a modulo arbitrary polynomial
and fast Vandermonde transform (FVT) are realized on computer using fast Fourier transform (FFT).
This real-valued FVT algorithm on the developed fast reduction polynomial algorithm is based. The
realization of FVT algorithm on computer with real multiplicative complexity O(2Nlog2

2N) and real
additive complexity O(6Nlog2

2N) is obtained. New FVT algorithm is applied in digital signal, filtering
and interpolation problems.

Key Words. Computational complexity, reduction a modulo, linear and cyclic convolutions, fast Fourier
transform, fast Vandermonde transform.

* This work was supported by International Science and Technology Center
(ISTC) under project B-95

1. INTRODUCTION

The theoretical-minimal estimations of multiplicative
complexity for the reduction a modulo arbitrary
polynomial and FVT were obtained in [1]. In this report
fast algorithms of the reduction a modulo arbitrary
polynomial and FVT according the scheme [1] are
realized on the computer using FFT. The obtained real
estimations of computational complexity are higher than
the theoretical ones from [1] because no each algorithm
realizable on computer is able to reach theoretical
minimal estimation for this class of problems. At the
same time the real algorithms realized on computer and
useful for filtering and interpolation of digital signals
and images are proposed in this paper.

2. THE ALGORITHM AND
COMPUTATIONAL COMPLEXITY OF
THE REDUCTION A MODULO
ARBITRARY POLYNOMIAL

The algorithm leading to estimations of Lemma 1 [1]
presents below. Let R(z) ≡ A(z)mod q(z) be a polynomial
residue modulo q(z) over V. According to the Euclid
theorem,

() () () ()A z B z q z R z= + (1)

where () ()A z a z q z z q zi
i

i

L
N

i
N i

i

N

= = −
=

−

=
∑ ∑, ,

0 1

()B z b zi
i

i

L N

=
=

−

∑
0

, ()R z r zi
i

i

N

=
=

−

∑
0

1

with ai, qi, bi, ri ∈ V. The first term in (1), is the linear
convolution (LC) of the sequences {b0 , b1 ,..., bL-N}, and
{-qN, -qN-1 ,...,-q1 ,1} [2]. For clarity, let us write (1) in the
matrix form:

⋅

−
−

−−−

−−

−−
−

=

−

−+−

−−−

−

−

−

N

N

NLNL

NLNL

N

N

L

L

L

q

q

qqq

qq

qq

q

a

a

a

a

a

a

a

0

1

1

01

1

11

1

12

1

0

1

1

2

1

O

M

L

L

MM

M

M

+

−
−−

−−

−

0

1

1

0

2

1 0

0

0

r

r

r

b

b

b

b

N
NL

NL

NL

M

M

M

 (2)

It follows from (1), that to determine the coefficients of the

residue R(z) described by the vector ()r
Kr r r rN

T
= −1 1 0, , , ,

first we have to find the coefficients of the incomplete

quotient B(z), that is, ()
r

Kb b b bL N L N

T= − − −, , ,1 0 . If

L=2N±1 or L=2N, this may be done by inverting the
lower triangular matrix with unit diagonal:

×

×

−−−

−−
−

=

−

−

−

−−−−−

−−

−−

−

N

L

L

L

NLNLNL

NL

NL

NL

a

a

a

a

qqq

qq

q

b

b

b

b

M

L

OMMMM

2

1

1

21

12

1

0

2

1

1

1

1

01

Indeed, for L = 2N-1, the LC submatrix under
consideration becomes N x N lower triangular matrix
and, therefore invertible. As shown in [3], the matrix
inverse of any lower triangular NxN matrix with a unit
diagonal can be written as the product of N-1 elementary
lower-column matrices.
Because 2N = L, i.e. L-N = N, and the elements qi

(i=1,...,N-1) are defined, the inverse matrix in (3) can be
computed in advance according to [3]. It is a lower
triangular matrix with a unit diagonal and the upper
submatrix of the LC matrix of sequences {aN ,...,aL-1 ,aL}

and { }− −− −q qN
() (), , , ,1

1
1 1K where -qi

(-1), i = 1, 2,..., N, are

elements of the inverse matrix.
Using the FFT algorithms [2], we can determine the
minimal number of multiplications to compute the LC-

product of two polynomials () () ()~ ~ ()B z A z q z= −1 , where

() ()~ ~
,

~
B z z b z b z A z a zN

i
i

i

L N

i
i

i

N

i N
i

i

L N

= + =
=

−

=

−

+
=

−

∑ ∑ ∑
0 0

1

0

, and

()q z z q zN
i

N i

i

N
() ()− − −

=

= − ∑1 1

1

.

Thus, the polynomial B(z) (which is a part of the

polynomial () ()~ ~
B z z B z b zN

i
i

i

N

= +
=

−

∑
0

1

) can be calculated

using FFTs. According to (1), the determination of the
residue R(z) can be reduced to computing the LC as
well:

() () () ()R z A z B z q z= − .

The LC described by the product of the polynomials
W(z) = B(z)q(z) is also calculated using the FFT
algorithms.
Note, however, that as long as the polynomials q(-1)(z)

and q(z) are normalized, ()~
B z and W(z) may be

calculated as follows:

() ()

() ()

~ ~

~ ~

()

()

B z A z z q z

z A z A z q z

N
i

N i

i

N

N
i

N i

i

N

= −

=

= −

− −

=

− −

=

∑

∑

1

1

1

1

(4)

() ()

() ()

W z B z z q z

z B z B z q z

N
i

N i

i

N

N
i

N

i

N

= −

=

= −

−

=

−

=

∑

∑
1

1

1

(5)

The products () ()z A z B zN ~ ~
=
∆

1 and () ()z B z W zN =
∆

1 can be

computed by a shift without any multiplication, so the
computation of (4) and (5) is reduced to the computation of
the following polynomial products:

() ()~ ~ ()B z A z q zi
N i

i

N

2
1

1

= − −

=
∑ , (6)

() ()W z B z q zi
N i

i

N

2
1

= −

=
∑ , (7)

where () ()deg
~

degA z B z L N= = − and

deg deg()q z q z Ni
N i

i

N

i
N i

i

N
− −

=

−

=

= = −∑ ∑1

1 1

1 .

In practical applications of this algorithm to compute
polynomial residues, long LCs are computed using FFTs,
[4]-[8].
Let us estimate the number of multiplications for the case
when N is not precisely equal to L/2 (or (L±1)/2 for odd L).
In Lemma 2 [1] the estimation of multiplications for this
case was derived. In this report the algorithm based on
Lemma 2 will be carried out by analogy with the one based
on Lemma 1.
Let us obtain the arithmetic complexity for such algorithm.
The fast procedures for LC are used for the implementation
of this algorithm. Minimum multiplicative complexity
algorithms for computing the LC were obtained only for
small lengths (N=2,3,4) [2], [9]. Therefore, it would be
reasonable to compute the LC of two N-point sequences {xn}
and {hn} (n=0,1,...,N-1) as the cyclic convolution (CC) of
2N-point sequences { }~xn = {x0 ,...,xN-1,0,...,0} and

{ }~
hn ={h0 ,..., hN-1 ,0,...,0} (it is obvious that LC of two

(N-1)-point or two (N-2)-point sequences may be also
computed by 2N-point CC). In its turn, the set of algorithms
for computing with the minimum multiplicative complexity

(3)

of the CC is confined to small lengths N≤9 [2], [10].
The lengths of N-point CC may be increased by the

Agarwal-Cooley algorithm [2],[10] if N N i
i

= ∏ and

Ni are relatively prime numbers, or by the recursive
nesting Nussbaumer algorithms [2] if N = 2α . The
recent computation algorithms for the CC, built around
the improved FFT called split-radix FFT (SRFFT) [5]-
[8], are more efficient.
Let us use the estimate for the arithmetic complexity of
an N-point real CC (N = 2α) obtained in [7],[11]. We
assume that V = R is the field of real numbers. The
computation of the N-point of sequences {xn} and {hn}
over R requires the following number of real
multiplications M(N) and real additions A(N):

() ()M N N N= − +log2
3

2 3 ; (8)

() ()A N N N= − +3 7
2 52log . (9)

It follows from (8) and (9), that the number of
multiplications and additions to compute the LC of N-
point sequences through the CC of 2N-point sequences
can be estimated as

() ()M N N N= − +2 1 32log ; (10)

() ()A N N N= − +6 1 52log . (11)

According to the algorithm based on Lemma 2 the
reduction of the polynomial A(z) modulo q(z) over R,
where deg A(z)= L= 2N-2 and degq(z)=N, amounts to
the computation of LC of (N-2)-point sequences

(() () ()~ ~ ()B z A z q z= −1) and LC of N-point sequences

(W(z) = B(z)q(z)) and to N subtraction (R(z)=A(z)-W(z)).
The algorithm for 2N-point CC may be used for the
computation of each LC. By virtue of (10) and (11), the
numbers of real multiplications and additions for the
computation of R(z) ≡ A(z)modq(z) are

() ()M N N N N, log2 2 2 2 1 62− = − + ; (12)

() ()
()

A N N N N N
N N

, log
log

2 2 2 6 1 10
12 1 10

2

2

− = + − + =
= − +

(13)

where M(N,2N-2) and A(N,2N-2) are functions
depending both on N and L = 2N-2.

3. THE ALGORITHM AND
COMPUTATIONAL COMPLEXITY OF
FAST VANDERMONDE TRANSFORM

Let us note that the computation of the Vandermonde
transform of the sequence {xn}, n = 0,..., N-1, reduces to

the computation of the polynomial ()X z x zn
n

n

N

=
=

−

∑
0

1

 at the

points z = λ0, λ1,..., λN-1. Stated differently, we need to
determine the polynomial residues X(z) to mod(z-λ0), mod(z-
λ1),..., mod(z-λN-1). The usual consecutive division of X(z) by
each polynomial results in the multiplicative complexity
O(N2).
To construct a more efficient algorithm, we will use the
following property of polynomial residues:

() () ()
() ()[] ()

X X X z z
X z S z z

k k k

k

= = − =
= −

λ λ
λ

mod
mod mod

(14)

where S(z) is the divisor of q(z) and z-λk is the divisor of
S(z).
Theorem 2 from [1] proves the existence of a fast
Vandermonde transform (FVT). To construct a FVT
algorithm, we use tree-structured computation stages of the
dichotomous method [12] and then we adapt the algorithm
based on Lemma 2. This means that at the preprocessing
stage the reduction polynomials S(z) are computed as
follows: all linear reduction polynomials z-λk are pairwise
multiplied to determine second-degree reduction
polynomials; next, the N/2 second-degree reduction
polynomials are pairwise multiplied and fourth-degree
reduction polynomials are obtained, and so on until two
reduction polynomials of degree N/2 are obtained. The
computation of polynomial residues X(z)modS(z) with a view
to the determination of the polynomial residues
Xk≡X(z)mod(z-λk) according to (14) is realized by the
inverse order of computing stages. In the first stage, the

residues modulo the reduction polynomials ()z k
k

N

−
=

−

∏ λ
0

12

and ()z k
k

N

N

−
=

−

∏ λ
2

1

, are computed, i.e.,

() () ()X z X z z k
k

N

0
1

0

2 1
()

/

mod≡ −
=

−

∏ λ and

() () ()X z X z z k
k N

N

1
1

2

1
()

/

mod≡ −
=

−

∏ λ

At the second stage

() () () ()X z X z z k
k

N

0
2

0
1

0

4 1
()

/

mod≡ −
=

−

∏ λ

() () () ()X z X z z k
k N

N

1
2

0
1

4

2 1
()

/

mod≡ −
=

−

∏ λ

() () () ()X z X z z k
k N

N

2
2

1
1

2

3 4 1
()

/

mod≡ −
=

−

∏ λ and

() () () ()X z X z z k
k N

N

3
2

1
1

3 4

1
() mod≡ −

=

−

∏ λ

are computed, and so forth. At the last stage a, the
desired values of the polynomials at the points λk are
determined:

()() ()X X z z0 0
1

0≡ −−α λmod ,

() () ()X X z zN N N− −
−

−≡ −1 2 1
1

1/ modα λ .

We assume that V=R and the roots λ0, λ1,..., λN-1∈R are
known.
Taking into account these considerations, estimate the
total number of arithmetic operations involved in the N-
point FVT algorithm:

() ()[]∑
=

=⋅+−−=
α

1
2 2612log22

i

iiNNNM

= − +

 + =

= =
∑ ∑4 2 2 6 22

1 1

α α
α α

N N i N
i

i

i

log

()= − + −2 4 12 12
2

2N N N N Nlog log ; (15)

() ()[]∑
=

=⋅+−−=
α

1
2 21012log12

i

iiNNNA

()= − + −6 7 20 12
2

2N N N N Nlog log . (16)

As it follows from (15) the multiplicative complexity of
the proposed real-valued FVT algorithm is O(2Nlog2

2N)
which is equivalent to the one of the Aho-Hopcroft-
Ulman algorithm [12].

4. CONCLUSION

 The comparison of (15) with Theorem 2 from [1] shows
that for large N, the real-valued FVT algorithm requires
1/2log2N times more multiplications than does the
theoretically achievable multiplicative complexity
O(4Nlog2N). The FVT algorithm is much more efficient
than the computation of the polynomial X(z) at N
arbitrary points z = λ0, λ1,..., λN-1 by the N-fold
application of the Gorner scheme [4]. This means that

FVT algorithm can be conveniently used for constructing
fast Lagrange interpolation procedures for an arbitrary
choice of points λ0, λ1,..., λN-1. The interpolation procedures
here are well-posed from the numerical point of view,
because the proposed FVT algorithm makes repeated use of
the FFT algorithm.

5. REFERENCES

1.A.M.Krot, "The multiplicative complexity of the reduction
a modulo arbitrary polynomial, generalized KN-convolution
and fast Vandermonde transform" Proc. 13th Intern. Conf.
on Digital Signal Proc. (DSP’97), vol.2, Santorini, Greece,
pp. 893-897, 1997.
2.H.J.Nussbaumer, Fast Fourier Transform and Convolution
Algorithms. Berlin, Heidelberg, and New York:
Springer,1981.
3.S.Pissanetzky. Space Matrix Technology. London:
Academic Press, 1984.
4.D.E.Knuth. The Art of Computer Programming. Reading,
MA. Addison-Wesley, vol.2 (Seminumerical algorithms),
1969.
5.P.Duhamel and H.Hollmann, "Split-radix FFT algorithm",
Electron. Lett., vol.20, no. 1, pp. 14-16, 1984.
6.A.M.Krot and H.B. Minervina, "Fast Fourier transform
algorithms for real and Hermitian-symmetrical sequences",
Soviet J.Comm. Tech. Electron., vol.34, no.12, pp. 122-129,
1989 (a translation of Radiotekhnika i Elektronika, vol.34,
no. 2, pp. 369-376, 1989).
7.A.M.Krot, "The method of eigentransforms in different
fields for computing cyclic convolutions and discrete
Fourier transforms", U.S.S.R. Comput. Math. and Math.
Phys., vol. 29, no. 3, pp. 23-34, 1989 (a translation of Zh.
Vychisl. Mat. i Mat. Fiz., vol. 29, no. 5, p.p. 675-692,
1989).
8.A.M.Krot and H.B. Minervina, "Comment. Conjugate
pair fast Fourier transform", Electron. Letters, vol. 28, no.
12, pp. 1143-1144, 1992.
9.H.Krishna. Computation Complexity of Bilinear Forms,
Berlin: Springer, 1987.
10.J.H. McClellan and C.M. Rader, Number Theory in
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1979.
11. A.M.Krot, Discrete Models of Dynamic Systems Based
on the Polynomial Algebra. Minsk: Nauka i Tekhnika, 1990
(in Russian).
12.A.Aho, J.Hopcroft and J. Ulman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-
Wesley,1974.

