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ABSTRACT

In this contribution, we address a new second or-

der approach for multichannel zero forcing equaliza-

tion with controlled delay. The method basically ex-

ploits the second order whiteness input signal prop-

erties and condition of left invertibility of the mul-

tichannel. Channel identi�cation is investigated in

a second step. In comparison of existing methods,

the proposed method has the interesting properties

to involves some robustness with respect to chan-

nel order estimation, and similar complexity than

subspace-like methods.

Keywords: Multichannel identi�cation/equalization.

1. INTRODUCTION

During the last 5 years several blind second order mul-

tichannel identi�cation/equalization approaches based

on introducing channel diversity (due to oversampling

the received analog signal and/or using a sensors array)

have been proposed to suppress intersymbol interference

in digital transmission systems ([2], [3], [6],...).

Unfortunately, these methods su�er from many draw-

backs. The channel identi�cation methods are known to

be inconsistent when the channel order is not well esti-

mated and/or when there is loss of channel disparity

(i.e. when sub-channels hk(z) have close roots, see Fig-

ure 1) ([4]). The direct equalization methods (which

consist in estimating a left inverse of the channel) are

usually quite robust to the channel order estimation.

However, in the existing methods (like linear prediction

methods, for example [6]) the delay cannot be controlled

at least in a one step procedure. Because this parame-

ter is known to be important in practice in terms of the

input/output Mean Square Error (MSE) performances

([8]), a method based on the estimation of equalizers cor-

responding to each possible delay has been developed

[5]. Unfortunately this method increases considerably

the computational cost and is very sensitive to the loss

of channel disparity and channel order knowledge.

In this contribution, we propose an alternative sec-

ond order approach, based on a speci�c parametrization

of the 'left-null-space' of the desired global impulse re-

sponse, leading to the minimization of a quadratic (con-

vex) function in order to estimate a single equalizer with

a controlled delay. The method is promising since the

criterion involves some trade o� robustness properties

with respect over estimation of channel order. Bloc im-

plementation with di�erent constraints are considered.

In a second step, from the zero forcing equalizer, chan-

nel identi�cation based on input / output second order

correlation methods is addressed.

2. MODEL

The multichannel equalization problem consists in

choosing the q � 1 Finite Impulse Response equalizer

transfer function g�(z) = (g�;1(z); :::; g�;q(z))
>, with

g�;k(z)=
PN�1

p=0 g�;k(p) z
�p such that the output

v(n) = [g�(z)
>] y(n) =

N�1X
k=0

g�(k)
> y(n� k) (1)

achieves a "good" estimate of the scalar uncorrelated.

input sequence s(n � �) (with � an arbitrary integer

delay), see Figure 1. Note that g�(k) denotes the k
th

sub-vector (of length q) of the N dimensional equalizer

g� = (g�(0)
>; :::; g�(N � 1)>). We suppose that the

input signal is of variance �2s = 1. Herein, y(n) is un-

derstood as the multichannel observations vector y(n) =

[h(z)] s(n)+w(n) where h(z) = (h1(z); :::; hq(z))
>, with

entries hk(z) =
PQ

p=0 hk(p) z
�p a polynomial function

of degree Q. The additive Gaussian noise is described

by the q-dimensional vector w(n) = (w1(n); :::; wq(n))
>

independent of the input signal. We suppose that w(n)

is spatially and temporally white with variance �2w.

According to the previous model, the estimation of the

input signal turns to the estimation of the vector g� of

dimension Nq (with entries the components of g�(z))

such that:

v(n) = g>� YN (n) (2)

= g>� T (h)| {z }
f>

SN+Q(n) + g>�WN (n) ' s(n� �)
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Figure 1: Multichannel Equalization Scheme

where YN (n) (resp.WN (n)) is a regressor vector of the

N last q-dimensional observations y(n) (resp.w(n)).

SN+Q(n) contains the input sequence at n; n�1; :::; n�

N �Q+1. T (h) is the Nq� (N +Q) Sylvester channel

convolution matrix containing the taps of h(z) (see [3]).

Note that, T (h) is a full column-rank matrix, under the

fundamental hypothesis of channel identi�ability, i.e.,

when there is no common zeros between all components

hk(z) k = 1; :::; q and N�Q. For convenience we intro-

duce the notation M=N +Q.

3. QUADRATIC CRITERION

In order to simplify the presentation, we give prelim-

inary results in terms of the global impulse response f

(i.e. channel + equalizer). First, note that (if we ne-

glected the noise e�ects) perfect equalization is equiva-

lent to estimate a vector g� leading to f = � ��;where

�� = (0:::010:::0)> is a canonical vector (with � an ar-

bitrary scalar factor) of dimension N + Q such that

�ᵀ� SN+Q(n) = s(n��). Under channel identi�ability, it

is a priori possible to introduce the following quadratic

criterion (in terms of f),

Q�(f)
def
= j g>� T (h) P� j

2 = j f>P� j
2

where P� is a matrix of dimension M �M . The moti-

vation comes from the consideration that if Kernell(P�)

is spanned by ��, then the following result holds,

f� = arg min
f 2


Q�(f) , f� = � �� (3)

where 
 is a constraint in order to avoid the trivial solu-

tion f = 0. Obviously, there is in�nitely many solutions

for P�: We present here a straightforward solution de-

duced from a sum of Jordan matrices. Other variations

may be developed. The simple proposed choice is,

P� = J(�) + J(��M � 1) (4)

where J is a (Jordan) matrix of dimension M �M , de-

�ned as (J(m))ab = 1 if a� b = m and 0 elsewhere. We

may verify that dim span (P�) = M � 1 and that the

null space (of dimension one) is spanned by ��. Note

that each matrix P� is associated to a speci�c delay

� + 1 where � 2 f0; :::;Mg. The resulting criterion is

therefore,

Q�(f) = f>P�P
>
� f =

MX
j 6=�

f2j � 0 (5)

where Q�(f) = 0 if and only if all the components of f

but the (�+ 1)th are equal to zero.

A key point is to notice �rst that tanks to the

whiteness assumption of input signal we have S� =

RY (�) � �2wJ(�) +RY (� �M � 1)� �2wJ(� �M � 1)

= T (h)P�T (h)
ᵀ where RY (k) = E[YN (n)YN (n � k)>]

denotes the covariance matrix of the observations. Note

that this result stems form the whiteness input signal as-

sumption. The corresponding criterion, in term of g, can

be constructed therefore from the observations YN (n).

It results in a criterion of the form,

eQ�(f)
def
= f>P�

�
T (h)>WT (h)

�
P>� f (6)

where the weighting matrix W is chosen such that

T (h)ᵀWT (h) is de�nite positive. One may consider

for example the following choices: W = RY (0) � �2w I

leading to T (h)>WT (h) = (T (h)ᵀT (h))2, or W =

(RY (0)��
2
w I)

# in order to get T (h)>WT (h) = I (note

that in this case we obtain eQ�(f) = Q�(f)). We want

to use such a criterion in order to force g� to correspond

to the desired impulse response f� = ��. An important

point is that the previous criterion result in,

eQ�(g)
def
= g>S� W S

>

� g (7)

Thus, the main result of the paper can be summarized

by the relation below,

g?� = argmin
g2


eQ�(g) , T (h)
>

g?� = � �� (8)

where 
 denotes some properly constraint avoiding the

trivial solution g?� = 0. Note that since rank (T (h)) =

Nq �M � 0 the solution g?� is not unique. More pre-

cisely it is subject to the speci�c choice of the constraint


. Note that other choices for W may be introduced in

order to reduce the estimation variance of g?� for exam-

ple.

Proof. The proof is straightforward. Indeed, Q�(g) �

0 with g>S� W S
>

� g = 0 if and only if g>S� W = 0

where W > 0 . It implies that f>P� = 0: According

to the de�nition of P� (4) the only solutions fof the

equation above are of the form f = T (h)>g?� = � �� =

(0:::0�0:::0)> 222.

USEFUL CONSTRAINTS

Several constraints should be considered in the mini-

mization of eQ�(g). If we do not have information about

the input signal distribution, we should consider, for ex-

ample, the simple and classical following quadratic con-

straints: a) kgk2 = 1, for which the solution (8) is a unit

norm eigenvector associated to one zeros eigenvalue of

S� W Sᵀ�, b) E
�
v2
�
= �2s (= 1) or equivalently kfk2 = 1,

i.e. g>(RY (0) � �2wI)g = 1: The advantage of this

constraint (at least theoretically) is to guarantee that

T (h)>g?� = ��, in other words the scale factor � (see

expression (8)) is equal to 1: This choice is more natural



than the constraint (a), but it involves the minimization

of a generalized Raleigh ratio increasing consequently

the computational cost. A linear constraints without

eigenvalue (and/or eigenvector) estimation may be also

considered. In some applications partial informations on

the input signal are available. We may use this knowl-

edge to de�ne more e�cient constraints, for example,

with a constant modulus input signal, we should con-

sider : c) T�1
PT

n=1(g
>YN (n)YN (n)

>g� 1)2. If a short

input sequence (s(n))1�n�T is known by the receiver, a

natural constraint is : d) T�1
PT

n=1(g
>YN (n)� s(n))2.

EXAMPLE

We �rst illustrate the performances of estimation with

2-dimensional academics random channels h(z) (see Ta-

ble below for the zeros location of channel #1) driven

by a BPSK sequence. The noise variance is �2w = 0:01.

Roots of channel #1

h1(z) 1.40 -3.20

h2(z) 0.50 1.90

The degree of the equalizers g�(z) is chosen as N = 2.

Note that in this case T (h) is a square matrix. There

is only one solution g?�(z) corresponding to g?�(z) =

z��h#(z). To perform the minimization of (7), we use

500 samples for the covariance matrices estimation and

we minimized eQ�(g) under the constraint kg�k
2 = 1.

In Table I, we display the global impulse response f>� =

g>� T (h) (corresponding to the average of 20 Monte Carlo

realizations) for equalizers g� leading to delay estima-

tion � = 1; 3; 5. We can verify that the best result in

terms of residual ISI is given by � = 3, see Table I.

Table I: Global Impulse Response

f1 0.9497 0.1846 0.1922 0.1890 0.1655

f3 0.0704 0.1059 1.0000 0.1490 0.0790

f5 0.1195 0.2425 0.1217 0.2004 1.0000

ROBUSTNESS

One may notice that the criterion eQ�(g) has some

robustness properties in particular with respect to the

channel degree estimation. Under the fundamental as-

sumption of channel disparity (i.e. the sub-channels

hk(z) for k = 1; :::q do not have common roots, see [3])

the convolution matrix T (h) is full column rank when

the su�cient condition given by N � Q is met. In other

words, we have only to overestimate the channel degree

h(z) in order to guarantee that the vector g?� which min-

imize eQ�(g) is a left inverse of the channel convolution

matrix (up to a delay �), i:e:, g?>� T (h) = � �: Note

that in practice all the delays � do not lead to the same

MSE input/output performances because of the empiri-

cal estimation sensitivity with respect to � of the matrix

RY (��) + RY (M + 1 � �); which is necessary to con-

struct the criterion (6). In particular it is preferable to

avoid the delays � = 0 and M (see the example above).

A choice with a good trade o� is � � (M + 1)=2.

Under loss of channel disparity i.e., when the multi-

channel is of the form h(z) = h0(z)h(z) where h0(z) =P


k=0 h0(k) z
�k is a scalar polynomial function contain-

ing the common roots of hk(z) and where h(z) is a q�1

polynomial function of degree (Q � 
). Equivalent ex-

pression in term of the convolution matrix is T (h) =

T (h)T (h0) where T (h) is a Sylvester matrix of dimen-

sion Nq� (M�
) of full-rank column M�
 and T (h0)

is a Sylvester matrix of dimension (M�
)�M with full-

rank row M . From to the relation f = T (h0)
>T (h)>g�

.the only achievable impulses responses f are belong to

subspace spanned by the columns of T (h0)
>. This sub-

space is of dimension M � 
; i.e., lower to dimension

of f (equal to M). Thus, both previous remark imply

that theoretically it is no possible to guarantee that the

minimum f? of the quadratic criterion (6) is �� even

if in practice some quite good results can be obtained

for a long enough degree N � 1 of g�(z) and a small


. The performances depends in particular of the dis-

tances of the roots associated to h0(z) with respect to

the unit circle, the degree N and the input/output de-

lay �. More precisely, the criterion (6) can be written

as f>P� U P>� f with U = T (h0)
>T (h)>WT (h)T (h0),

where dim span(U) = M � 
 (with W full-rank). In

this case, the robustness to loss of disparity of the pro-

posed criterion lies in solutions (in term of f) of equation

P>� f =
P


k=1 �kuk where fukg denotes a basis of the

kernel of T (h0)
>. This point is still under investigation.

4. CHANNEL IDENTIFICATION

From the zero forcing equalizer g�, we are able

to investigate channel identi�cation. Let h =

(h(0)>; :::; h(Q)>)>the vector of dimension q � (Q +

1) collecting the taps of h(z). The identi�cation

of each sub-vector h(p) (with 0 � p � Q) of

length q, de�ned as h(p) = (h1(p); :::; hq(p))
>, is

given by the following input / output correlation ex-

pression, h(k + �) = E
�
y(n) ([ĝ�(z)

>] y(n� k))
�
�

E
�
w(n) ([ĝ�(z)

>] w(n � k))
�
; where -� � k � Q � �:

According the noise and signal whiteness assumptions,

we get the consistent estimator:

h(k+ �) =

N�1X
m=0

(Ry(k+m)� �2w �0;k+mIq) ĝ�(m) (9)

where Ry is the covariance matrix associated to the q

dimensional vector y(n) de�ned as Ry(p) = E[y(n)y(n�
p)>]. A compactly expression of the channel estimation

is:

ĥ = H�(Ry )ĝ� (10)

where H�(Ry) is a block-Hankel triangular matrix de-

�ned in footnote (see next page).

Proof. We established the proof of (9) and (10). One

can easily check that E[y(n) ([ĝ�(z)>] y(n�k))] leads toPQ

m=0 h(m) E[s(n�m)s(n�k��)] +E[w(n)s(n�k��)]
+E[[h(z)]s(n) s(n�k��)] +E[w(n) ([ĝ�(z)>] w(n�k))].



From the independence hypotheses between signal and

noise, we get (9). Note that E[y(n) ([ĝ�(z)>] y(n� k))]

may also be written as E[y(n)
PN�1

m=0 bg�(m)> z�my(n�

k)] =
PN�1

m=0 E[y(n)y(n�m� k)>] bg�(m): For the noise

contribution we get in the same way
PN�1

m=0 E[w(n)w(n�
(m + k))>] bg�(m) where E[w(n)w(n � (m + k))>] =

�2w Iq if m + k = 0 and 0 elsewhere. By expanding the

expression (9) over all k 2 f��; :::; Q��g we obtain the

compact expression (10) 222.

It is sometimes interesting to address di�erent choices

for the delay �: One may therefore estimate h as an

average of the estimation (10) given by several equalizers

ĝ�. The estimation procedure is therefore,

ĥ =
1

jKj

X
�2K

H�(Ry )ĝ� (11)

where K denotes the subset of subscripts � of all zero

forcing estimated equalizer where we recall that � 2

f0; :::;Mg, jKj is understood as the cardinal (i.e. the

length) of K.1

5. SIMULATIONS

We consider the channel #2 describe from its roots

in the table below. It correspond to a 2 dimensional

urban radio-mobile channel simulated according to the

(real value) model of Clarke applied to GSM (�COST

257). The channel taps are displayed in Table II.

Roots of channel #2

h1(z) 7.2335 -1.0459 0.2364 0.0436

h2(z) 6.8943 -0.5573 -0.1649 0.1693

The channel is driven by a BPSK source. We investigate

at SNR=25dB a zero forcing equalizer g(z) of degree

N � 1 = 6 leading to an input/output delay � = 3:We

use the weighting matrixW = (RY (0)��2w I)
# and the

minimization of (7) is subject to the constraint kfk2 =

1: The covariance matrices RY (k) are estimated with

the empirical estimator T�1
PT

n=1 YN (n)YN (n � k)>,

with T = 500. The estimated global impulse re-

sponse f?>3 = bg?>3 T (h) (averaged over 10 Monte Carlo

runs) leads to f?3 = (0:0252; 0:0614; 1:0000; 0:0944;

0:0643; 0:0152; 0:0267; 0:0636; 0:0086; 0:0433; 0:0071)

with ISI(f?3 )=
P

j 6=3 f3(j)
2 = 0:0121. One may verify

that it is very close to the canonical vector �3.Note that

the taps are normalized. Likewise the estimation of f?6
leads to f?6 = (0:0012; 0:1156; 0:0400; 0:1051; 0:6237;

1:0000; 0:0095; 0:0607; 0:1297; 0:0060; 0:0039) with an

1

H�
def
=

2
666664

RY (��) RY (��+ 1) � � � RY (0)� �̂2I � � � RY (Q� �)

RY (��+ 1) � � � RY (0)� �̂2I � � � RY (Q� �) 0 0
...

...

RY (0)� �̂2I � � � RY (Q� �) 0 � � � 0

RY (Q� �) 0 0 � � � 0

3
777775

higher ISI (ISI(f?6 )= 0:1982):

Table II: Taps of channel #2

h1(0) h1(1) h1(2) h1(3) h1(4)

0.111 0.719 0.647 0.228 0.009

h2(0) h2(1) h2(2) h2(3) h2(4)

0.134 0.847 0.513 0.026 0.014

The estimation of the channel h(z) from the equalizer g?3
is established by the procedure (10). The taps are dis-

played in the Table III. Note that although the channel

is overestimated the estimation result is satisfactory. In

particular the last taps h(5) and h(6) are almost equal

to zeros (� 10�4).

Table III: Channel estimation (with overestimation)

bh1(0) bh1(1) bh1(2) bh1(3) bh1(4)
0.219 0.650 0.699 0.203 0.021

bh2(0) bh2(1) bh2(2) bh2(3) bh2(4)
0.246 0.785 0.568 0.014 0.027

bh1(5) bh1(6)
0.006 0.000

bh2(5) bh2(6)
0.000 0.000
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