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ABSTRACT

This paper deals with a blind problem for an IIR model
in a time domain. Based on an output over-sampling
scheme, the proposed algorithm can estimate parameters
of an alternative multi-output model description �rst,
then the parameters of original model can be obtained
later. It can be clari�ed that an IIR model can be iden-
ti�ed by using over-sampling scheme.

1 INTRODUCTION

A challengable problem which deals with unavailable
source signal attracts much research and application in-
terests in a wide range of signal processing areas. It
is desired to identify a model with unknown input just
through the output signal and some properties about the
input signal, i.e., to solve a blind identi�cation problem.

In the last two decades many studies for blind prob-
lem were developed, which include the high-order statis-
tics based algorithms (HOS) [1, 2], the maximum like-
lihood (ML) approach [3], and recently the attractive
approaches based on the second-order cyclostationary
statistics (SOCS) [4, 5, 6]. However, the existing HOS ap-
proaches exhibit slow convergence and have heavy com-
putational load, while ML approaches require the statis-
tics of the unknown signal. The approaches based on
SOCS have considerably modest computation, however
they have almost restricted availability to an FIR model.
Though a frequency domain approach based on SOCS
has been proposed for an IIR model [6], the variance of
estimates in frequency domain may be larger than those
in time domain in some cases. The e�ectiveness of over-
sampling scheme has also been investigated for IIR model
identi�cation problem in time domain [7, 8, 9], while [7]
discussed only noise free case, and [7, 8] require that the
over-sampling rate is larger than the order of numerator
polynomial. However, this requirement can be deleted in
[9].

The purpose of this paper is to propose a novel blind
identi�cation algorithm for an IIR channel model using
a subspace approach. We demonstrate that the over-
sampled IIR model can be represented by a new multiple-
output model description with a common denominator

polynomial in its transfer function, and by making use
of it we identify the IIR model from the only accessible
over-sampled output.

2 PROBLEM STATEMENT

A linear discrete-time IIR model is considered in this pa-
per. Let fsmg be the source sequence, fw(�)g is a white
observation noise with zero mean, �nite variance, and in-
dependent of fsmg. fz(�)g and fy(�)g are noise-free and
noise-corrupted output signal respectively. Though it can
also be modeled by an FIR model, it may need long length
of the impulse response to guarantee modeling accuracy,
hence it is expected to obtain the IIR model identi�ca-
tion in some application cases. Now the problem to be
dealt with is how to identify the IIR model parameters
just from the noise corrupted output fy(�)g.

An input sequence considered here is given by

u(t) =

�
sm : t = mT

0 : t 6= mT
(1)

where T is the symbol period. In many cases, the se-
quence fsmg can be considered as an i.i.d sequence with
zero mean and known variance �2s . The proposed algo-
rithm can also be extended to the case in which the input
signal has duration time T with a zero-order holder.

The system output is over-sampled and it becomes to
be a cyclostationary signal [4, 6]. The sampling interval
� satis�es � = T/p, where the integer p is referred to as
an over-sampling rate. Under the sampling interval �,
the IIR model called �-model can be characterized by

y(k) =
B(q�1)

A(q�1)
u(k) + w(k) (2)

where
B(q�1)

A(q�1)
=

b1q
�1 + � � �+ bnq

�n

1 + a1q�1 + � � �+ anq�n

Here n is the model order and q�1�e��s is denoted as
a backward shift operator. Meanwhile the system input,
output samples are denoted as u(k) and y(k) respectively,
and w(k) is a white additive observation noise.

The model in (2) can describe the linear channel ef-
�ciently, however, we will use an alternative model de-
scription for the blind identi�cation.



3 MODEL DESCRIPTION FOR IDENTIFI-

CATION

Let the following new variables corresponding to the over-
sampling rate p be de�ned as

uj(m) = u(mp+ j); zj(m) = z(mp+ j)
wj(m) = w(mp+ j); yj(m) = y(mp+ j) (3)

where j = 1; � � � ; p. From the property of the transmitted
sequence described in (1), uj(m) satis�es that�

u1(m) = � � � = up�1(m) = 0
up(m) = sm+1

(4)

By using the de�nitions and the property of the input
given above, we have the following theorem.

Theorem 1 The input signal to a linear discrete-time

IIR model is given in (1), where the symbol period is T .

The output is over-sampled at interval � = T/p, where
p is an over-sampling rate, then the �-model given by

(2) can also be described by an SIMO model description

with a common denominator polynomial G(z�1) and p

numerator polynomials as

yj(m) =
Hj(z

�1)

G(z�1)
sm + wj(m) (5)

where the denominator G(z�1) is given by (6)

G(z�1) = det
�
I � z�1Ap

�
= 1 +

nX
i=1

giz
�i (6)

and p numerator polynomials Hj(z
�1) are given in (7).

Hj(z
�1) = c � adj

�
I � z�1Ap

�
�Aj�1b

=

nX
i=1

hj;iz
�i+1 (7)

where

!!A =

2
6664
�a1 1 0 0

�a2 0
. . . 0

...
... 0 1

�an 0 � � � 0

3
7775 b =

2
664
b1
b2
...

bn

3
775

c = [ 1 0 � � � 0 ]

(8)

And z�1�e��T is denoted as a backward shift operator

di�erent from q�1.

Since the observation interval of yj(m) is T , the model
in (5) can be considered as a

nX
i=0

�
aiy�(k�i)(�(k � 1� i))

�
=

nX
i=1

�
bis�(k�i)

�
+

nX
i=0

�
aiw�(k�i)(�(k � 1� i))

�
(9)

where �(x) is an integer part of the quotient x/p, �(x) is
the remainder of devision x/p, k = mp+1; � � � ; (m+1)p.
Substituting (5) leads to

nX
i=0

�
aiH�(k�i)(z

�1)z�(k�1�i)��(k�1)
�

= G(z�1)

nX
i=1

�
biz

�(k�i)��(k�1)
�

(10)

Then we can obtain a set of linear equations about ai and
bi when G(z�1) and Hj(z

�1) are known or estimated,
thus the �-model parameters can be determined by solv-
ing an over-determined linear equation set.

Based on the results above, a blind identi�cation can
be established in the next section.

4 BLIND IDENTIFICATION ALGORHIM

Now let us show how to estimate the numerator and de-
nominator polynomials. Here we consider the case for
p = 2, and it can be extended into the case of p > 2
easily.

4.1 Estimation of Numerator Polynomials

From the SIMO representation given in (5), we have(
y1(m) = H1(z

�1)

G(z�1)
sm + w1(m)

y2(m) = H2(z
�1)

G(z�1)
sm + w2(m)

(11)

De�ne a matrix Y 1;2(L) as

Y 1;2(L) = [Y 1(L) �Y 2(L) ] (12)

where

Y j(L) =

2
64

yj(L) � � � yj(1)
... � � �

...
yj(N + L� 1) � � � yj(N)

3
75
N�L

where L � n. From the de�nitions in (3), it can also be
expressed by

Y 1;2(L) = Z 1;2(L) +W 1;2(L) (13)

where Z 1;2(L), W 1;2(L) have the same structure as
Y 1;2(L). Then matrix RZ

1;2(L) has following property.

Lemma If H1(z
�1) and H2(z

�1) are coprime, and the

source sequence fsmg satis�es the PE condition, then

Rank
�
RZ

1;2(L)
�
= L+ n� 1 (14)

where RZ
1;2(L) =

�
Z T

1;2(L)Z 1;2(L)
��
N .

However, the observations are corrupted by observa-
tion noise, we can only obtain RY

1;2(L). Since the obser-
vation noise w(�) is a white stationary noise and indepen-
dent of the input signal, then we have that

lim
N!1

RY
1;2(L) = lim

N!1
RZ

1;2(L) + �2wI (15)

Let the EVD of RY
1;2(L) can be written as

RY
1;2(L) = U�U

T (16)

Then from Lemma, the eigenvectors can be divided into
two subspaces, one is the signal subspace U s determined
by the columns of H 1;2(L), where

H 1;2(L) =

�
H i

�H j

�

H j =

2
64
hj;1 � � � hj;n

. . .
. . .

hj;1 � � � hj;n

3
75
L�(L+n�1)

And the noise subspace U?, i.e.,

RY
1;2(L) = [U s U? ]

�
� s 0

0 � ?

��
U T

s

U T
?

�
(17)



where the noise subspace U? is orthogonal to the signal
subspace U s, i.e., U??H 1;2(L), therefore, we have

U T
?
H 1;2(L) = 0 (18)

where the noise subspace has dimension of 2L � (L �
n+ 1). Based on the orthogonal property given in (18),
the numerator polynomials H1(z

�1), H2(z
�1) and any

eigenvector of the noise subspace U?(:; l) has following
relationship as

U
(l)

?;12h1;2 = 0 (19)

where

U
(l)

?;12 =
�
U

(l)

?;1 U
(l)

?;2

�
U

(l)

?;j =2
6666664

U?((2� j)L+ 1; l)
...

. . .

U?((2� j)L+ L; l)
... U?((2� j)L+ 1; l)
. . .

U?((2� j)L+ L; l)

3
7777775

h1;2 = [h1;1 � � � h1;n h2;1 � � � h2;n ]
T

Then parameters of Hj(z
�1) can be estimated from any

eigenvector of the noise subspace, which is illustrated in
the following theorem.

Theorem 2 Assume that H1(z
�1) and H2(z

�1) are co-

prime, and the source sequence fsmg satis�es the PE con-

dition, the subspaces of RY
1;2(L) are given by (17). Then

U
(l)

?;12(:; 2 : 2n) has column full rank 2n�1. Further, the
estimate of h1;2 with a scalar ambiguity � which will be

estimated later can be given by

ĥ1;2 =

�
�

�
�
	 T
l 	 l

��1
	 T
l 	 l

�
(20)

where

	 l = U
(l)

?;12(:; 2 : 2n);  l = U
(l)

?;12(:; 1) (21)

It is reasonable that the estimate accuracy of h1;2 in-
creases if all the noise subspace eigenvectors are used,
i.e., l = 1; � � � ; L� n+ 1.

4.2 The Denominator Polynomial Estimation

De�ne the auto-covariance Rj(�) as

Rj(�) = E fyj(m)yj(m� �)g

then from (5)

E

( 
yj(m) +

nX
i=1

giyj(m� i)

!
yj(m� �)

)

= E

( 
nX
i=1

hj;is(m� i) +

nX
i=0

giwj(m� i)

!
� yj(m� �)g (22)

Denote the impulse response sequence of 1
�
G(z�1) as

1

G(z�1)
=

1X
i=0

iz
�1 (23)

Then yj(m) can also be written as

yj(m) =

1X
i=1

�j;is(m� j) + wj(m) (24)

where2
66664

�j;1
�j;2
�j;3
�j;4
...

3
77775 =

2
6666664

hj;1
...

. . .

hj;n � � � hj;1
hj;n � � � hj;1

. . .
. . .

. . .

3
7777775

2
66664
0
1
2
3
...

3
77775

From the independence property of sequence fs(m)g, (22)
can be written as

E

( 
yj(m) +

nX
i=1

giyj(m� i)

!
yj(m� �)

)

=

max(0;n��+1)X
i=1

hj;i+��j;i�
2
s + g

�
�2w (25)

where � � 0. For � = 0; � � � ; n� 1, we have that�
�2wJ �Rj

�
g +
j = rj � �2we1 (26)

where

Rj =

2
664

Rj(�1) Rj(�2) � � � Rj(�n)
Rj(0) Rj(�1) � � � Rj(�n+ 1)

...
. . .

. . . Rj(�n+ 2)
Rj(n� 2) � � � Rj(0) Rj(�1)

3
775

J =

2
664
0 0 � � � 0
1 0 � � � 0

0
. . .

. . .
...

0 0 1 0

3
775 ; e1 = [ 1 0 � � � 0 ]

T


j =

2
64
hj;1 � � � hj;n
...

���
hj;n

3
75
2
64
hj;1
...

. . .

hj;n � � � hj;1

3
75

rj = [Rj(0) � � � Rj(�n+ 1) ]
T

Let �Rj = Rj � �2wJ , �rj = rj � �2we1, then for j = 1; 2�
�R1 
1
�R2 
2

��
g



�
=

�
�r1
�r2

�
(27)

Notice that

Rj(�) = lim
M!1

1

M

M+��1X
m=�

yj(m)yj(m� �) (28)

Thus by making use of the available observation data, gi
can be estimated from (27). � can be calculated by

�̂ =
p
0 (29)

Moreover, the parameters of �-model can also be cal-
culated by using the approach given in Section 3.

5 NUMBERICAL SIMULATIONS

The transmitted sequence fsmg is with emission period
T = 1:0, variance �2s = 1:0, which is an i.i.d signal. We
consider the discrete-time channel model with sampling
interval � = 0:5, i.e., p = 2. The observation noise w

is a white noise with zero mean and variance �2w and is
independent of fsmg, and the signal to noise ratio is set to
SNR= 20dB. We consider two IIR models with di�erent
impulse response shape.

Case 1. The over-sampled �-model is given by

A(q�1) = 0:0545q�1 � 0:0179q�2 � 0:0460q�3



+0:2168q�4 + 0:1642q�5

B(q�1) = 1� 1:2479q�1 + 0:8574q�2 � 0:2902q�3

Its shape of impulse response may often be encountered
with in communication area. The true parameters of T -
model polynomials are given by

G(z�1) = 1 + 0:1575z�1+ 0:0109z�2 � 0:0842z�3

H1(z
�1) = 0:0545z�1� 0:0216z�2 + 0:3901z�3

+0:2037z�4

H2(z
�1) = 0:0501z�1+ 0:1599z�2 + 0:3774z�3

+0:0477z�4

By using the observations during 2000T , the estimated
parameters could be obtained as follows:

Ĥ1(z
�1) = 0:0527z�1� 0:0233z�2 + 0:3905z�3

+0:2023z�4

Ĥ2(z
�1) = 0:0479z�1+ 0:1579z�2 + 0:3779z�3

+0:0441z�4

Ĝ(z�1) = 1 + 0:1472z�1+ 0:0005z�2 � 0:10182z�3

Â(q�1) = 1� 1:2591q�1 + 0:8736q�2 � 0:3054q�3

B̂(q�1) = 0:0526q�1 � 0:0184q�2 � 0:0453q�3

+0:2157q�4+ 0:1632q�5

2 4 6 8 10 12 14 16
−0.1

0

0.1

0.2

0.3

0.4

Figure 1: The Estimated impulse response. Solid line:
True; Dotted line: Estimate

Case 2. The discrete-time model with a general impulse
response shape is given by

B(q�1)

A(q�1)
=

2:0q�1 � 1:38q�2 � 0:756q�3

1� 1:9101q�1 + 1:5183q�2 � 0:4607q�3

The SIMO model polynomials are given by

G(z�1) = 1� 0:6117z�1+ 0:5453z�2 � 0:2122z�3

H1(z
�1) = 2:0z�1 � 0:3553z�2� 1:7836z�3

H2(z
�1) = 2:4401z�1� 2:6179z�2 � 0:3483z�3

The estimated parameters of the SIMO transfer function
from the observations within 1200T are as follows:

Ĝ(z�1) = 1� 0:6261z�1+ 0:5615z�2 � 0:2398z�3

Ĥ1(z
�1) = 1:9915z�1� 0:3861z�2 � 1:7570z�3

Ĥ2(z
�1) = 2:4232z�1� 2:6320z�2 � 0:3155z�3

The original model parameters are calculated as follows

B̂(q�1)

Â(q�1)
=

2:0105q�1 � 1:4914q�2 � 0:6529q�3

1� 1:9401q�1 + 1:5690q�2 � 0:4897q�3

The estimated impulse response with sampling interval
� is shown in Figure 2.
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Figure 2: The Estimated impulse response. Solid line:
True; Dotted line: Estimate

6 CONCLUSIONS

We have proposed a novel approach to solve the blind
identi�cation problem of an IIR model. By using the only
accessible output observations sampled at higher sam-
pling rate than the symbol rate, the SISO model can be
described by an SIMO model with common denominator
polynomial in the transfer function, then the parameters
of the SIMO model and original SISO model can be es-
timated. It can be clari�ed that an IIR model can be
identi�ed just using the over-sampled output.
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