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ABSTRACT
The least-squares and the subspace methods are
well known approaches for blind channel identifica-
tion/equalization. When the order of the channel is
known, the algorithms are able to identify the channel,
under the so-called length and zero conditions. Further-
more, in the noiseless case, the channel can be perfect-
ly equalized. Less is known about the performance of
these algorithms in the cases in which the channel order
is underestimated. We partition the true impulse re-
sponse into the significant part and the tails. We show
that the m-th order least-squares or subspace method-
s estimate an impulse response which is “close” to the
m-th order significant part of the true impulse response.
The closeness depends on the diversity of the m-th order
significant part and the size of the “unmodeled” part.

1 INTRODUCTION

The recent development of second order statistics (SOS)
based blind channel identification methods under a
single-input/multiple-output (SIMO) channel setting
[1], derived either from fractionally sampling (FS) of
the receiver or from the use of an array of sensors at the
receiver, has created intensive research interest. Many
novel schemes have been developed, which can claim ex-
act channel identification/equalization, in the noiseless
case, under the so-called zero forcing conditions. The
most well known approaches are the least-squares (LS)
[2], the subspace (SS) [3] and the linear prediction (LP)
[4] methods.

While all the aforementioned methods claim exact
channel identification/equalization, under the zero forc-
ing conditions, in the noiseless case, their behavior may
change dramatically [5]–[10] under more realistic condi-
tions, including:

• the presence of non-negligible additive channel
noise;
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• the presence of long tails of “small” leading and/or
trailing impulse response terms.

Motivated by [8], we partition the true impulse response
into the significant part and the tails. By significant part
is meant the part which is usually found at the middle of
the impulse response and contains all the large terms (it
may contain some small intermediate terms as well); the
small leading and trailing terms compose the tails. We
show that the m-th order LS or SS methods estimate a
channel, which is “close” to the m-th order significant
part of the true channel; the closeness depends on the
diversity of the m-th order significant part and the size
of the “unmodeled” part. Furthermore, we show that
if we try to model not only the significant part of the
channel but also (a part of) the tails, then the quality of
the estimate may degrade dramatically. Thus we should
avoid modeling tails.

Therefore, we call a case overmodeled (resp. under-
modeled), if the assumed channel length is bigger (resp.
smaller) than the effective channel length, which is the
length of the significant part of the true channel.

2 LS/SS METHODS: EXACT-ORDER CASE
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Fig. 1. Single-input/two-output channel setting.

In this section, we describe the LS and SS methods
for blind system identification for the single-input/two-
output channel setting presented in Fig. 1; this setting



can be obtained by channel oversampling by a factor of
2, which is quite common in telecommunications. If the
true channel order is M , the output of the j-th channel,
x

(j)
i , for j = 1, 2, is given by

x
(j)
i = si ⊗ h

(j)
i + n

(j)
i =

M∑
k=0

h
(j)
k si−k + n

(j)
i ,

where ⊗ denotes the convolution operator, {si} the in-
put sequence, which is assumed zero-mean unit-variance
i.i.d., {h(j)

i } the impulse response of the j-th channel
and {n(j)

i } the additive white channel noise. We denote
the impulse response of the j-th channel, j = 1, 2, as
hj

M
∆= [h(j)

0 · · · h
(j)
M ]T , and the entire channel parame-

ter vector as hM
∆=

[h1
M

h2
M

]
.

By stacking the (L + 1) most recent samples of each
channel, we construct the data vector

xL(i) ∆= [x(1)
i · · · x(1)

i−L x
(2)
i · · · x(2)

i−L]T ,

which can be expressed as

xL(i) = HL(hM) sL+M (i) + nL(i),

using input and noise vectors

sL+M (i) ∆= [si · · · si−L−M ]T ,

nL(i) ∆= [n(1)
i · · · n(1)

i−L n
(2)
i · · · n(2)

i−L]T .

The convolution matrix HL(hM) is defined as

HL(hM ) ∆=
[ FL(h1

M)
FL(h2

M)

]
,

where FL(hi
M) is the (L + 1) × (M + L + 1) matrix:

FL(hi
M ) ∆=


h

(i)
0 · · · · · · h

(i)
M

. . . . . .
h

(i)
0 · · · · · · h

(i)
M

 .

In order to review the LS and the SS methods for the
identification of hM , we consider the case L = M . Fur-
thermore, we assume that the subchannels do not share
common zeros, guaranteeing their identifiability.

It is shown in [11] that, for the two-channel case, the
LS and SS estimators coincide. They both start from
the data autocorrelation matrix

RM
∆= E[xM (i)xT

M (i)]

and they identify, in the noiseless or the spatially and
temporally white noise case, the unknown impulse re-
sponse hM , by following the sequence of steps:

RM → nM → hM = TM nM

where nM is the minimal eigenvector of RM and

TM
∆=

[
0 IM+1

−IM+1 0

]
,

with IM+1 being the (M + 1)-dimensional identity ma-
trix.

Having identified the channel hM , we can equalize it
perfectly, in the noiseless case, by using the zero-forcing
equalizers of order (M−1), for delays i = 0, . . . , 2M−1:

gZF
M−1,i

∆= H−T
M−1(hM) ei, (1)

where ei denotes the vector with 1 at the (i + 1)-st po-
sition and zeros elsewhere.

3 UNDERMODELING/OVERMODELING
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Fig. 2. Portion of the real part of microwave radio channel.

In Fig. 2, we plot a portion of the real part of the
oversampled, by a factor of 2, radio microwave channel
chan1.mat (http://spib.rice.edu/spib/microwave.html).
The partitioning into the significant part and the tails
is clear. In symbols, this partition can be expressed, for
0 ≤ m1 < m2 ≤ M , as [8], [9]:

hM = hz
m1,m2

+ dz
m1,m2

, (2)

with

hz
m1,m2

∆=
[

hz1
m1,m2

hz2
m1,m2

]
, dz

m1,m2

∆=
[

dz1
m1,m2

dz2
m1,m2

]
,

where, for j = 1, 2,

hzj
m1,m2

∆= [ 0 · · · 0︸ ︷︷ ︸
m1

h(j)
m1

· · · h(j)
m2︸ ︷︷ ︸

m2−m1+1

0 · · · 0︸ ︷︷ ︸
M−m2

]T ,

dzj
m1,m2

∆= [h(j)
0 · · · h

(j)
m1−1︸ ︷︷ ︸

m1

0 · · ·0︸ ︷︷ ︸
m2−m1+1

h
(j)
m2+1 · · · h

(j)
M︸ ︷︷ ︸

M−m2

]T .

With hm1,m2 we denote the non zero-padded vectors:

hm1,m2

∆=
[

h1
m1,m2

h2
m1,m2

]
, hj

m1,m2

∆= [ h(j)
m1

· · · h(j)
m2

]T .

In the sequel, we study the m-th order LS and SS meth-
ods, in the noiseless case, and we explore the relationship



between the “identified” m-th order impulse response
and the true M -th order impulse response hM .

If m = m2 − m1 and the true impulse response is
hm1,m2 , then the autocorrelation matrix of xm, Rm,
provides sufficient information for the identification of
the hm1,m2 , via the sequence of computations:

Rm ≡ Hm(hm1,m2 ) HT
m(hm1,m2) → nm → hm1,m2 ,

where nm denotes the minimal eigenvector of Rm and
hm1,m2 = Tmnm. If the true channel impulse response
is hz

m1,m2
, then it is easy to show that the autocorrela-

tion matrix of xm remains Rm, because

Hm(hz
m1,m2

) HT
m(hz

m1,m2
) = Hm(hm1,m2) HT

m(hm1,m2),

meaning that we can identify the nonzero part of
hz

m1,m2
, namely hm1,m2 . This is directly related to the

blind nature of the algorithm, that is, the exploitation of
solely the channel output statistics, and will be proved
very useful in the sequel.

Now, let us consider what happens when the true im-
pulse response is hM , with ||hM||2 = 1, under the as-
sumption that dz

m1,m2
is “small”, i.e.,

||dz
m1,m2

||2 = ε, ε � 1. (3)

In this case

||hz
m1,m2

||2 = ||hm1,m2 ||2 =
√

1− ε2 ≡ γ. (4)

The autocorrelation matrix of xm is

R̃m = Hm(hM ) HT
m(hM )

= Hm(hz
m1,m2

+ dz
m1,m2

) HT
m(hz

m1,m2
+ dz

m1,m2
)

= Rm + Em,

where Em denotes the resulting perturbation. The m-
th order LS/SS method will “identify” h̃m1,m2 , through
the sequence of computations:

R̃m → ñm → h̃m1,m2 = Tmñm.

At first, we address how close ñm is to nm. For this pur-
pose, we may consider R̃m as a perturbation of Rm and
apply eigenvector perturbation results. However, since
nm and ñm are the minimal right singular vectors of
HT

m(hz
m1,m2

) and HT
m(hM ), respectively, it is preferable

to use singular vector perturbation results. We thus con-
sider HT

m(hM ) as a perturbation ofHT
m(hz

m1,m2
), and we

give an upper bound for ||nm − ñm||2.
We recall that under the no common zero as-

sumption, rank
(HT

m(hz
m1,m2

)
)

= 2m + 1, yielding
σ2(m+1)(HT

m(hz
m1,m2

)) = 0, with associated right sin-
gular vector nm; in this case, nm defines the null space
of HT

m(hz
m1,m2

). We denote by δ the smallest nonzero
singular value of HT

m(hz
m1,m2

), i.e.,

δ
∆= σ2m+1(HT

m(hz
m1,m2

)). (5)

Since δ measures the distance in the matrix 2-norm of
HT

m(hz
m1,m2

) from the matrices with rank 2m, violating
thus our assumption concerning its rank, it it clearly a
measure of diversity of the channel hm1,m2 .

Using (2), we identify the perturbation on
HT

m(hz
m1,m2

) as

∆m
∆= HT

m(hM) −HT
m(hz

m1,m2
) = HT

m(dz
m1,m2

),

which, using the matrix 2-norm/F -norm inequality, the
structure of HT

m(dz
m1,m2

) and (3), yields

||∆m||2 =
∣∣∣∣HT

m(dz
m1,m2

)
∣∣∣∣

2
≤ ε

√
m + 1 ≡ E . (6)

The next theorem, whose proof is found in [9], provides
an upper bound for ||nm − ñm||2.

Theorem 1: Let rank(HT
m(hz

m1,m2
) ) = 2m + 1.

Let nm be the minimum right singular vector of
HT

m(hz
m1,m2

), δ the minimum nonzero singular value of
HT

m(hz
m1,m2

) and ñm the minimum right singular vector

of HT
m(hM ). If E <

δ

2
, then

||nm − ñm||2 ≤ 2
√

2
E
δ
≡ D. (7)

Since hm1,m2 = γTmnm, h̃m1,m2 = Tmñm, and Tm is
orthogonal, we obtain from (4) and (7) [9]

||hm1,m2 − h̃m1,m2 ||2 ≤ (1− γ) + D. (8)

Consequently, if the diversity of the m-th order signif-
icant part is sufficiently large, and the size of the tails
is sufficiently small, then the m-th order LS/SS method
computes an impulse response, which is “close” to the
m-th order significant part of the true channel. The
delay m1 is unknown, but this fact does not change dra-
matically the situation during the equalization step [9].

In the sequel, we consider the case m = m′
2 − m′

1,
with m′

1 < m1 and/or m′
2 > m2, which means that we

try to model not only the significant part of the channel
but some “small” terms as well, and we derive an ex-
pression of the diversity of the channel we try to model,
in terms of the size of the small terms. In this case, the
factor which determines the accuracy of the estimation
of hm′

1,m′
2

is

δ′ ∆= σ2m+1

(HT
m(hm′

1,m′
2
)
)
, (9)

that is, the minimal nonzero singular value of
HT

m(hm′
1,m′

2
). In the next theorem [9], we give a re-

lationship between δ′ and h
(j)
m′

1
, h

(j)
m′

2
, for j=1,2, which

provides much insight into the behavior of the algorith-
m, if h

(j)
m′

1
and/or h

(j)
m′

2
, for j=1,2, are “small”.

Theorem 2: If δ′ denotes the minimal nonzero sin-
gular value of HT

m(hm′
1,m′

2
), then

δ′ ≤ min
(∣∣∣h(1)

m′
1

∣∣∣ +
∣∣∣h(2)

m′
1

∣∣∣ ,
∣∣∣h(1)

m′
2

∣∣∣ +
∣∣∣h(2)

m′
2

∣∣∣) . (10)



Since δ′ decreases dramatically when we try to model
“small” terms, it is clear that modeling tails, may lead
to big estimation errors. This situation is analogous to
“channel overmodeling”, where the subspace methods
cannot identify uniquely the true channel.

4 SIMULATIONS

We process output data from the oversampled, by a
factor of 2, microwave radio channel chan4.mat, found
at http://spib.rice.edu/spib/microwave.html, with input
100 samples of an i.i.d. 4-QAM signal. The channel pos-
sesses long tails of small leading and trailing terms; the
“small” terms are about two orders of magnitude smaller
than the significant terms. In order to estimate the ef-
fective channel length, we compute (the “overmodeled”)
R̃30, and we apply the AIC and MDL criteria, which,
unfortunately, do not provide realistic estimates of the
significant part of the channel. We found very useful the
criterion:

rank(RL) = arg min
i

λi+1(R̃L)

λi(R̃L)
, i = 1, · · · , 2L + 1,

which gives that the effective channel length is 2 (three
taps). We apply the second order SS method. Then,
we compute the corresponding first-order zero-forcing
equalizers. In Fig. 3, we see that the eye is open.

Unfortunately, we did not manage to process reliably
data obtained by some channels available at this site
(for example, chan3.mat, chan7.mat). Finally, we found
it difficult to process reliably more complicated input
constellations, like, for example, 16-QAM. These are,
probably, obstacles against general applicability of the
method. In the cases in which we are able to open
the eye, 100 input samples are enough. However, on-
ly channels whose significant part provides enough di-
versity and, at the same time, the unmodeled tails are
sufficiently small can be approximated, and consequent-
ly equalized, sufficiently well. The development of an
efficient method for the estimation of the effective chan-
nel length remains open. Results with a similar flavor
concerning the LP method have been derived in [10].
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