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ABSTRACT

Unlike the recent works dealing with purely blind chan-

nel estimation algorithms that are based on the second-

order statistics of the received signal, in this paper we

address the exploitation of the �nite alphabet of the

transmitted symbols to improve the blind estimation

performance of the channel. The incorporation of the

�nite alphabet nature leads the symbols present in the

problem to act as a training sequence for the channel

estimation. Hence, a blind approach that exploits the

symbol alphabet outperforms its purely blind version.

We propose to incorporate the prior knowledge of the

�nite alphabet by combining a purely blind channel es-

timation criterion with a decision-directed linear MMSE

equalization criterion. This combined criterion corre-

sponds to an optimallyweighted least-squares approach.

Simulation results demonstrate that signi�cant improve-

ment can be obtained by exploiting the �nite symbol

alphabet.

1 INTRODUCTION

In a mobile radio transmission context, channels are spe-

ci�c in that they may vary rapidly. Due to bandwidth

limitations and multipath propagation, the transmission

channel distorts the signal being transmitted, leading to

Inter-Symbol Interference (ISI). In order to recover the

emitted data, the receiver needs to identify this channel

distortion and equalize it. Classical system identi�ca-

tion techniques require the use of both system input

and output, which leads to the transmission of a train-

ing sequence, i.e. a set of �xed data (that do not carry

information) that are known to both transmitter and re-

ceiver. The use of a training sequence reduces the trans-

mission rate, especially when the training sequence has

to be retransmitted often, due to the possibly fast chan-

nel variations that occur in mobile communications and

consequently decreases the bandwidth e�ciency. The

goal of blind identi�cation is to identify the unknown

channel using the received signal only. Blind single-user

multichannel estimation techniques exploit a multichan-

nel formulation corresponding to a Single Input Multi-

ple Output (SIMO) vector channel. The channel is as-

sumed to have a �nite delay spread NT . The multiple

FIR channels can be obtained by oversampling a single

received signal, but can also be obtained from multiple

received signals from an array of antennas (in the con-

text of mobile digital communications [1],[2]) or from a

combination of both. For m channels the discrete-time

input-output relationship can be written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) =HAN (k) + v(k) (1)

where y(k) = [yH1 (k) � � �y
H
m(k)]

H ;h(i) =�
hH1 (i) � � �h

H
m(i)

�H
, v(k) = [vH1 (k) � � �v

H
m(k)]

H , H =

[h(N�1) � � �h(0)], AN (k) =
�
a(k�N+1)H � � �a(k)H

�H
and superscript H denotes Hermitian transpose. Let

H(z) =
PN�1

i=0 h(i)z�i = [HH1 (z) � � �H
H
m(z)]

H be

the SIMO channel transfer function, and h =�
hH(N�1) � � �hH (0)

�H
. Consider the symbols i.i.d.

if required and additive independent white Gaussian

circular noise v(k) with rvv(k�i) = Ev(k)v(i)H =

�2vIm �ki. Assume we receive M samples:

YM(k) = TM(H)AM+N�1(k) + V M (k) (2)

where YM (k) = [yH(k�M+1) � � �yH(k)]H and simi-

larly for V M (k). TM (X) is a block Toeplitz matrix with

M block rows and [X 0p�(M�1)q] as �rst block row, X

being considered as a block row vector with p�q blocks.
We shall simplify the notation in (2) with k = M�1 to

Y = T (H)A+ V : (3)

We assume that mM > M+N�1 in which case the

channel convolution matrix T (H) has more rows than

columns. If the Hi(z); i = 1; : : : ;m have no zeros in

common, then T (H) has full column rank (which we

will henceforth assume). For obvious reasons, the col-

umn space of T (H) is called the signal subspace and its

orthogonal complement the noise subspace. The signal

subspace is parameterized linearly by h.



2 EXPLOITATION OF THE FINITE SYM-

BOL ALPHABET

We propose to incorporate the prior knowledge of the

�nite alphabet by combining a purely blind channel es-

timation criterion with a decision-directed linear MMSE

equalization criterion.

2.1 The Blind Channel Estimation Criterion

Consider a noise subspace parameterization in term

of subchannels impulse reponse H?y(z) which satis-

�es H?y(z)H?(z) = 0. In [3], we proposed di�erent

choices for H?y(z) and we discussed blind channel esti-

mation methods using these parameterizations. To be-

gin with, consider the case of two channels: m = 2.

One can observe that for noise-free signals, we have

H2(z)y1(k)�H1(z)y2(k) = 0, which can be written in a

matrix form as [H2(z) �H1(z)]y(k) = H?y(z)y(k) = 0.

The matrix H?y(z) is parametrized by the channel im-

pulse response and satis�es H?y(z)H(z) = 0. The FIR

H?y(z) �lter is called blocking equalizer. For m > 2,

blocking equalizers H?y(z) can be constructed by con-

sidering the channels in pairs. The choice of H?y(z) is

far from unique. To begin with, the number of pairs to

be considered, which is the number of rows inH?y(z), is

not unique. The minimum number is m�1 whereas the

maximumnumber is
m(m�1)

2
. We shall callH?y(z) bal-

anced if tr fH?y(z)H?(z)g = �Hy(z)H(z) for some

real scalar � and Hy(z) = HH(1=z�). People usually

take the maximum number of rows, which corresponds

to a balancedH?y(z): H
?y
bal;max(z). The minimumnum-

ber of rows in H?y(z) to be balanced is m. We get for

instance

H
?y
min(z) =

2
64

�H2(z) H1(z) � � � 0
...

...
. . .

...

�Hm(z) 0 � � � H1(z)

3
75 ; (4)

H
?y
bal;min(z) =

2
66664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0

Hm(z) 0 � � � 0 �H1(z)

3
77775 :

(5)

Note that using H
?y
min(z) doesn't lead to span the over-

all noise subspace ((m� 2)(N � 1) independant vectors

are missing to accomplish this purpose); whereas using

H
?y
bal;min(z) spans the totality of the noise subspace. Of-

course, using the maximum number of rows in H?y(z)

leads also to span the noise subspace sinceH
?y
bal;min(z) is

a subset of this H?y(z). Using H
?y
bal;min(z) leads to the

orthogonal complement of the Toeplitz channel matrix

T (h?) which satis�es:

T (h?)T (H) = 0 (6)

Hence, it is clear that in the noiseless case, T (h?)Y =

T (h?)T (H)A = 0. A channel estimation method based

on this noise subspace parameterization is called Sub-

channel Response Matching (SRM) [4] and consists in

minimizing the criterion kT (h?)Yk.

2.2 The Decision-Directed Linear MMSE

Equalization Criterion

In order to exploit the �nite alphabet nature of the

symbols in the channel estimation problem, we consider

an equalizer that combines the blind information of a

channel estimation method (SRM) and the �nite alpha-

bet aspect. The �nite alphabet aspect is illustarted

through the detection of the symbols according to a

decision-directed criterion. The detected symbols are

given by (the subscripts are omitted for simplicity of

notation)
bbA = dec( bA) (dec(:) is the decision operation

that chooses the element in the symbol alphabet clos-

est to its argument), where bA is the output of a linear

MMSE equalizer:

bA = RAYR
�1
YYY = �2aT

H (h)R�1YY Y: (7)

If we consider
bbA = A, then the error in the linear symbol

estimates bA is

~A = A� bA
=

�
I � �2aT

H (h)R�1YY
�
A� �2aT

H(h)R�1YY V :

(8)

Hence, we construct a criterion by combining blind and

decision-directed equalizer based error terms:

E =

�
T (h?)Y

A� �2aT
H(h)R�1Y YY

�
(9)

The randomness of E can be decoupled in the symbols

contribution and the noise contribution as:�
0

I � �2aT
H(h)R�1YY T (h)

�
A+

�
T (h?)

��2aT
H (h)R�1Y Y

�
V

(10)

It can be shown that the minimization of EHR�1EEE

w.r.t. h leads to the following decoupled minimization

criterion: minh of

YHP
T H (h

?

)
Y+kA��2aT (h)R

�1
YY Yk

2�
T H(h)T (h)+ �2

v

�2
a

I

�:
(11)

The �rst term in (11) is the Deteministic Maximum

Likelihood (DML) criterion, and the second term is

an optimally Weighted Least Squares (WLS) decision-

directed equalization criterion. An optimal strategy to

solve the DML part is presented in [5] and is called

Pseudo-Quadratic Maximum Likelihood. In the follow-

ing we explain the principle of this method.

2.3 The Pseudo-Quadratic ML (PQML)

In the DML context, both channel coe�cients and in-

put symbols are considered as deterministic quantities,

which are jointly estimated through the criterion:

max
A;h

f(Yjh) , min
A;h

kY � T (h)Ak2 (12)



f(Yjh) is Gaussian conditional distribution of Y given h

(assuming V is circular white Gaussian noise). We con-

sider here that the blind DML identi�ability conditions

are veri�ed: the channel is irreducible, the input sym-

bols are persistently exciting and the burst su�ciently

long. The channel is then identi�able up to a scale fac-

tor and we assume the regularizing constraint khk = 1.

Optimizing (12) w.r.t. A and replacing in (12), leads to

min
khk=1

Y
HP?

T (h)
Y (13)

P?
T (h)

is the orthogonal projection on the noise sub-

space. Since P?
T (h)

= P
T H (h?), (13) can be written

as:

min
khk=1

YHT H(h?)R+T (h?)Y (14)

where R = T (h?)T H(h?) and + denotes the Moore-

Penrose pseudo-inverse (T (h?) may not be full-row

rank). T (h?) being linear in h, a matrix Y �lled out

with the elements of the observation vector Y can be

found such that Yh = T (h?)Y. Then (5) becomes:

min
khk=1

hHYHR+Yh (15)

Usually, this criterion is solved in the Iterative

Quadratic ML (IQML) fashion in which YHR+Y is con-

sidered constant.

The principle of PQML has been �rst applied to sinu-

soids in noise estimation [6] and then to blind channel

estimation in [7]. The gradient of the DML cost function

may be arranged as P(h)h, where P(h) is (ideally) posi-
tive semi-de�nite. The ML solution veri�es P(h)h = 0,

which is solved under the constraint khk = 1 by the

PQML strategy as follows: P(h)h is also the gradi-

ent of the quadratic cost function hHP(h)h in which

P(h) is considerd constant, and as P(h) is positive semi-

de�nite, h is chosen in [7] as the eigenvector correspond-

ing to the smallest absolute eigenvalue of P(h). This

solution is used to reevaluate P(h) and other iterations

may be done. The di�culty consists in �nding the right

P(h) and especially with the positive semi-de�nite con-

straint. In our problem:

P(h) = YHR+Y � BHB (16)

where B is the matrix such that T H (h?)B = B�h� with

B =
h
T (h?)T H (h?)

i+
T (h?)Y (superscript � denotes

complex conjugate). Asymptotically, the e�ect of the

second term is to remove the noise contribution present

in the �rst one. The criterion is asymptotically globally

convergent: any initialization of P(h) results in a con-

sistent PQML channel estimate and the second iteration

�nds the global minimizer.

The matrix P(h) is inde�nite for �niteM , and apply-

ing directly the PQML strategy will not work as stated

in [7], except for high SNR. We introduce an arbitrary

� so that the PQML criterion becomes the following

minimization problem:

min
khk=1;�

h
H
�
YHR+Y � �BHB

	
h (17)

with semi-de�nite positivity constraint on the central

matrix. h is the minimal generalized eigenvector of

YHR+Y and BHB, and � the minimal generalized eigen-

value. Asymptotically, there is global convergence for h,

and � tends to one. The stationary points of PQML are

the same as those of DML, this is why PQML has the

same performance as DML. Asymptotically PQML gives

the global ML minimizer.

2.4 PQML-WLS

We use PQML to solve the �rst term of the criterion

(11) and we solve the second term in a WLS sense in

which the weighting matrix W =
�
T H(h)T (h) +

�2
v

�2
a

I
�

and RY Y are considered constant. Since PQML solves

the DML problem in an optimal sense and the WLS part

is optimally weighted, the previous strategy to solve the

whole criterion given in (11) is expected to perform well.

The problem is solved iteratively: at each iteration, the

solution for h is:

h = �2a
�
YHR+Y � �BHB + �4aX

TWTX �
��1

XTWTA�;

(18)

where the matrix X is de�ned such that Xh� =

T H (h)X and X = R�1Y YY (superscript T denotes the

transpose operator). The initialization of the PQML-

WLS algorithm can be done by a purely blind estimation

method: one can apply the PQML algorithm (initialized

in turn by the SRM channel estimate).

The performance of the algorithm can be improved by

using soft decisions on the symbols instead of the hard

ones. In this case, we obtain a maximum a posteriori

(MAP) estimator that exploits the gaussian distribution

of the ~ak:

bbak =
KX
i=1

e�

��bak�ai��2
�2 ai

KX
i=1

e�

��bak�ai��2
�2

; (19)

where fai; i = 1; � � � ;Kg is the symbol alphabet and �2

is the diagonal element of �2a
�
I � �2aT

H(h)R�1Y Y T (h)
�
.

2.5 Decision-Directed Least-Squares (DD-LS)

The criterion given in (12) is equivalent to the following

minimization problem

min
h

kY �Ahk2; (20)

where the matrix A is de�ned such that Ah = T (h)A.
Solving this least-squares problem w.r.t. h leads to �nd

the channel as:

h =
�
AHA

��1
AHY (21)



3 SIMULATION RESULTS

We consider a burst length of M = 200, an irreducible

complex randomly generated channelH of length N = 3

with m = 2 subchannels. The input symbols are drawn

from an i.i.d. QPSK symbols sequence. The considered

SNR is the average SNR per subchannel at the channel

ouput. It is de�ned as

SNR =
khk2�2a
m�2v

: (22)

Blind estimation methods give a channel estimate �̂h

with k�̂hk = 1, we adjust the right scale factor � so

that hHo (�
�̂h) = hHo ho where ho is the true channel (see

[8]): the �nal estimate is bh = � �̂h. The performance

measure is the Normalized MSE: NMSE, averaged over

100 Monte-Carlo runs and de�ned as

NMSE = Ekh� bhk2=khk2: (23)

We simulated the previously described methods and

evaluated their performance. In Fig. 1, we consider a

SNR=5dB and we perform one iteration of the PQML

algorithm initialized by the SRMmethod. The obtained

channel estimate is used to initialize the PQML-WLS

method and the WLS part of the criterion (11) consid-

ered as a multichannel estimation method by decision

direct equalization. We perform two iterations for both

these two strategies. We observe that the PQML-WLS

algorithm outperforms the WLS method especially in

the �rst iteration. This means that the combined cri-

terion (SRM criterion and DD equalization criterion)

leads to signi�cant performance improvement compared

to the performance of each of the two methods to be

combined. We ploted also the curves corresponding to

the DD-LS method in the following two cases: in the

�rst case, the symbols are detected and in the second

case the symbols are considered known (the performance

obtained in this second case can be seen as a lower per-

fromance bound for the PQML-WLS method). It can

be noted that the DD-LS method in which the symbols

are detected performs well (the obtained NMSE is close

to the one obtained in the case of DD-LS with known

symbols). This good performance is due to the good

initalization given by the PQML method.
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