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ABSTRACT

This paper deals with the compensation for nonlin-

ear distortions introduced by power-e�cient ampli�ers

on linear modulations by means of equalization. In

our approach, we employ a Decision-Feedback Equal-

izer (DFE) based on the Generalized Cerebellar Model

Arithmetic Computer. The new scheme is compared

with the conventional Linear DFE, the Volterra and the

Multi-Layer Perceptron-based DFE in terms of their

convergence rates, Bit-error rates and Signal-to-Noise

Ratio degradation.

1 INTRODUCTION

Practical digital communication systems employing

multilevel Pulse Amplitude Modulation (PAM), one

kind of bandwidth-e�cient transmission method for dig-

ital signals, require a compromise between power e�-

ciency and linearity of the transmitter ampli�ers. If the

ampli�ers are working near the saturation point (maxi-

mum output power), a better use of the available power

is achieved, but the PAM signal is severely distorted

due to envelope uctuation. It is possible to reduce the

nonlinear distortion by making the ampli�er operate in

a quasi-linear region far from the saturation point (the

diminution of output power is called output back-o�).

However, this strategy reduces the transmitted signal

power and, therefore, the noise margin.

The need of some compensation technique has been

recognized long time ago. Nonlinear compensators con-

sist of controlling either the signal before it is sent (pre-

distortion) or the noisy received signal (equalization). In

this paper we consider the compensation problem from

the receiver perspective.

The optimal solution is the Maximum Likelihood Se-

quence Detector (MLSD) using the Viterbi Algorithm

[1], however its large complexity makes this method use-

less for practical channels. Suboptimal equalizer struc-

tures based on Multi-Layer Perceptron (MLP) [2], the

Radial Basis Function (RBF) [3] and the Volterra Fil-

ters [4, 5] have been shown to o�er a signi�cant perfor-
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mance improvement over the traditional linear equaliz-

ers on account of their ability to approximate the opti-

mal symbol-decision equalizer implicitly. However, the

MLP presents problems of slow convergence and unpre-

dictable solutions during training; while the RBF net-

work's ability to realize the optimal equalization solu-

tion is crucially dependent upon whether its centers can

be positioned correctly at the desired channel states;

whereas the polynomial �lters su�ers the drawback of

slow convergence and exponentially increasing �lter di-

mensions.

In this paper, a new approach for the Decision-

Feedback Equalizer using the Generalized Cerebellar

Model Arithmetic Computer (GCMAC) [6, 7] is pre-

sented. The GCMAC network possesses nonlinear de-

cision making capabilities and yet has a linear-in-the-

parameters structure. The former property is essential

for realizing the optimal equalization solution and the

latter characteristic is bene�cial in practical implemen-

tation. In this paper, the GCMAC-based DFE is com-

pared with the conventional Linear DFE, the Volterra

and the MLP-based DFE in terms of their convergence

rates, Bit-Error rates (BER) and Signal-to-Noise Ratio

(SNR) degradation. The simulation results show that

the GCMAC improves the performance of previous net-

works, specially when strong nonlinearities are present.

The paper is organized as follows. The e�ects of non-

linear ampli�cation of PAM signals are analyzed in Sec-

tion 2. The structure of the GCMAC network is dis-

cussed in Section 3. Two GCMAC-based DFE schemes

are presented in Section 4. Simulation results and per-

formance comparisons are explained in Section 5. Fi-

nally, conclusions are given in Section 6.

2 PROBLEM STATEMENT

Figure 1 depicts the block diagram of a baseband

equivalent PAM system including a memoryless nonlin-

ear High-Power Ampli�er (HPA). Driving the communi-

cation system with the stream of M -ary complex PAM

symbols, the the baseband complex signal at the output

of receiver �lter can be written as :

R[k] = F (: : : ; A[k� 1]; A[k]; A[k+ 1]; : : :) + Z[k] (1)
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Figure 1: Block diagram of the PAM communication

system.
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Figure 2: (a) Original symbol constellation. (b) Re-

ceived symbol constellation after nonlinear distortion

(ampli�er delivering maximum output power).

where R[k] is the received symbol, fA[k]g are the origi-
nal PAM symbols, F (�) is the nonlinear mapping which

describes the behavior of the channel1 and Z[k] is the

observation noise. Figure 2 represents a typical received

symbol constellation after driving the previous scheme

with a 16-QAM signal.

The general Decision-Feedback Equalizer transforms

a �nite sequence of P correlative received and detected

PAM symbols and produces the estimated symbol Â[k]:

Â[k] = H(Â[k� Nb]; : : : ; Â[k� 1];

R[k]; R[k+ 1]; : : : ; R[k+Mf ])

= H(xP [k]) : (2)

where Nb is the order of the feedback part, Mf is the

order of the feedforward part and P = Nb +Mf + 1 is

the order of the equalizer (it is assumed that the channel

does not introduces additional delay).

3 NETWORK STRUCTURE

An important feature of the function H(�) is the hy-
brid nature of its input space. Unlike the feedforward

part, driven by symbols with continuous-amplitudes, the

feedback part, excited by pastM -ary PAM symbol deci-

sions, has a discrete-amplitude nature. This particular

feature suggests the use of a network which allows both

classes of input variables, such as the GCMAC network.

1We consider the channel includingall the elements and devices
between the modulator and the detector.

The GCMAC network approximates the desired non-

linear function (i.e. the optimal decision function) using

a set of overlapped Local Basis Functions (LBFs). The

LBFs are placed at �xed intervals using a lattice which

discretizes the input space into cells. The support of

LBFs are P -dimensional rectangles whose size is speci-

�ed by the vector � = [�1; : : : ; �P ]
T , where 1 � �i < Li,

and Li is the number of cells along the i-th input axis.

To provide the network with generalization abilities,

�max = max(�) LBFs cover every cell of input space.

As the generalization is inuenced by the geometry of

the local domains, � is called generalization vector2.

The output of GCMAC is a linear combination of

LBFs:

y = H(x) =

NX

j=1

wj�j(x) : (3)

where f�1(x); : : : ;�N (x)g is the set of basis functions,
and w is the vector of weights. Hence, the approxi-

mation used by the GCMAC network is linear in the

unknown coe�cients w and, therefore, simple instanta-

neous learning laws can be used, for which convergence

can be established subject to well-understood restric-

tions [8].

4 EQUALIZER ARCHITECTURES
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Figure 3: Equalizer architectures. (a) General DFE:

GCMAC I (b) Conventional DFE: GCMAC II.

The general GCMAC-based DFE transforms a correl-

ative sequence of both received and past decision feed-

back samples (see Eq. (2), and Figure 3.a). Although,

the arithmetic cost per sample is independent of the or-

der3 P , the total number of LBFs grows exponentially

2When �i = 1;8i, the GCMAC becomes a LUT (no general-
ization); the larger �i is, the more generalization is obtained.

3The number of weights used to update or construct the out-
put, �max, is independent of the dimension of input space.



with the order. As a result, the rate of convergence

decreases for channels with large memory. In order to

alleviate the memory requirements and accelerate the

convergence, we have used the structure depicted in Fig-

ure 3.b. Using this scheme, the feedforward part ellimi-

nates the precursor (anticausal) intersymbol interference

(ISI) and the feedback part cancels the remaining non-

linear postcursor ISI. Obviously, the di�erence in rela-

tive computational complexities of both structures be-

comes more signi�cant for large feedforward and feed-

back equalizer orders Mf and Nb.

5 PERFORMANCE ANALYSIS

We have simulated a typical 16-QAM system with

root-raised cosine pulse shaping �lter (� = 0:5) and

a High Power Ampli�er delivering maximum output

power. The channel is assumed to have a at fre-

quency response with additive, white, circularly sym-

metric, Gaussian noise. For simplicity, we have also as-

sumed that slicer produces right decisions, avoiding the

propagation of errors in the feedback branch. For a fair

comparison, all of the equalizers analyzed were chosen

to be of order P = 3 (Mf = Nb = 1).

The networks used used in the comparison are a �fth-

order Volterra Filter, a MLP with two-hidden layers

(10 nodes in the �rst hidden layer and 6 in the sec-

ond one), and two GCMAC networks whose con�gu-

ration is explained as follows. The inputs coming into

the feedforward part are quantized using 32 nonuniform-

spaced levels; the corresponding generalization vector is

�f = [16; 16; 16; 16]T (it should be noticed that the di-

mension of input space is doubled to process complex

inputs). Since, the previous decisions are already dis-

crete in amplitude, no quantization is needed, and the

selected generalization vector is �b = [3; 3]T . For sim-

plicity, simulationswere carried out with constant LBFs.

5.1 Convergence characteristics

The Volterra and the GCMAC equalizers have been

trained using the LMS algorithm. The MLP was trained

using the Back-Propagation (BP) algorithm modi�ed

with a momentum term that increases the convergence

rate and produces smooth weight changes. The Mean

Square Error (MSE) curves achieved by the analyzed

equalizers are represented in Figure 4. It is observed

that the Volterra equalizer presents the fastest conver-

gence (curve 1). The learning curve of the MLP (curve

2) reveals the irregular behavior of the BP algorithm;

in spite of this, the MLP outperforms the Volterra,

although it requires a larger training time. The full

GCMAC-based DFE (GCMAC I) produces the least �-

nal MSE outperforming both the MLP and the Volterra

equalizers in 6 dB and 9 dB, respectively. Finally, the

structures shown in Figure 3 are compared. The simpli-

�ed GCMAC-based DFE (GCMAC II) presents a rela-

tive high initial rate of convergence compared with the

general structure (curve 4 in Figure 4); however, its �nal

100 200 300 400 500 600 700 800 900
−30

−25

−20

−15

−10

−5

0

5

10

Symbols (x 100)

M
S

E
 (

dB
)

1. Volterra

2. MLP

3. GCMAC I

4. GCMAC II

Figure 4: Convergence curves when the HPA is satu-

rated. Curve 1: Fifth-order Volterra equalizer; curve 2:

Multi-Layer Perceptron (6-10-6-2); curve 3: GCMAC

I DFE (�f = [16; 16; 16;16]T, �b = [3; 3]T); curve 4.

GCMAC II DFE. Traces are ensembled average of 15

convergence curves.

MSE is slightly worse, specially when strong nonlinear-

ities are present.

5.2 BER characteristics
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Additional simulations were made to determine the

BER versus the Signal-to-Noise-Ratio. The results, av-

eraged over 15 trials of length 106 bits, are depicted in

Figure 5. It can be seen that the Linear DFE achieves

poor performance when the received samples have suf-

fered high nonlinear distortion (Figure 5.a). In this con-

text, the GCMAC gives a more e�ective compensation

for the nonlinear distortion than the other structures.

However, for larger input back-o�s, that is, lower non-

linear distortion, the MLP and the Volterra equalizers

provide better results.

5.3 Total Degradation characteristics

Other way to quantify the validity of the analyzed



equalizers is to compute the equivalent SNR degradation

caused by the residual nonlinear distortion at a speci-

�ed BER. The Total Degradation, expressed in dB, is

de�ned as the di�erence between the required SNR by

the equalized system to reach the speci�ed BER at a

given input back-o�, and the required SNR to obtain

the same BER on the Gaussian at channel. The to-

tal degradation results in a convex function of the input

back-o�, taking the minimum value at the optimum in-

put back-o� (BO
opt
in ). We have obtained this function

after using the quasi-analytical procedure described in

[9]. Results for a target BER of 10�4 are shown in Fig-

ure 6 and Table 1.
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[Gain] [BO
opt
in ] Param. Iter.

1. L-DFE 0 7.35 3 200

2. Volterra 4.44 2.79 57 6 103

3. MLP 4.67 1.98 150 > 105

4. GCMAC I 6.28 1.28 4924 7 104

5. GCMAC II 5.43 1.82 1243 4 104

Table 1: Gain, optimum input back-o�, number of pa-

rameters and speed of convergence for the simulated

equalizers.

Again, it is con�rmed that the GCMAC-based equal-

izers perform clearly better than the other equalizers

when strong nonlinearities are present in the received se-

quence. The gain4 achieved by the GCMAC I equalizer

is 6 dB with respect to the linear DFE. Furthermore, the

optimum input back-o� is only 1.28 dB, which means in

practice a better use of the available power.
4The gain is de�ned as the di�erence between the values of the

Total Degradation evaluated at the optimum input back-o�.

6 CONCLUSIONS

In this paper we have proposed new structures to

equalize nonlinear channels. We have focused the com-

pensation for nonlinear distortion caused by power ef-

�cient ampli�ers on Pulse Amplitude Modulation sys-

tems. By means of a GCMAC-based equalizer, it is

possible to obtain e�ective compensation even for strong

nonlinearities. The proposed equalizers provide bet-

ter performance in steady state MSE, BER and SNR

degradation over other nonlinear structures, namely the

Volterra and the MLP-based equalizers.
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