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ABSTRACT

A novel blind channel equalizer is proposed which is
suitable both for linear and nonlinear channels. The
proposed equalizer consists of the following three steps:
a) identification of the clusters formed by the received
data samples, via an unsupervised learning clustering
technique, b) labeling of the identified clusters, by using
a Hidden Markov Modeling (HMM) of the process and
¢) channel equalization by means of a Cluster Based
Sequence Equalizer. The performance of the equalizer
is investigated for a variety of channels (minimum/non-
minimum phase, linear/nonlinear channels).

1 Introduction

Intersymbol Interference (ISI) is a major impairment in
today’s high bit rate communications systems. Channel
equalizers, used in the receiver part, aim to suppress the
effect of ISI. In most of the cases; the communications
channel is unknown, and the design of the equalizer is
performed on the basis of a known training sequence of
information bits. However, there are many cases that
transmission of a training sequence is not possible or
desirable. This mode of equalizer design is known as
blind’.

Blind channel equalization is a challenging task and
has been the focus of intense research effort. Recently,
an interest has risen on approaches based on data clus-
tering techniques, [1], [2]. A major advantage of such ap-
proaches is that no explicit channel modeling is required,
that makes them attractive when nonlinear channels are
involved, [4]. A cluster-based blind channel estimation
algorithm consists of two steps : a) data clusters are
first identified via an unsupervised learning technique
and b) labeling of the identified clusters is achieved, by
unraveling the information hidden in the sequence of re-
ceived data, [1], [2]. When the channel estimation task
is completed, a Cluster Based Sequence Equalizer, [3],
can be employed to provide signal detection.

In this paper, a novel cluster - based blind channel
estimation procedure is proposed. The novelty of the
technique is in the way the identified clusters are la-
beled. Labeling is performed using a Hidden Markov
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Modeling (HMM) of the estimation process and by re-
lating data clusters to HMM states. The probability
of each data cluster to correspond to a specific label is
treated as the unknown parameter of an HMM learning
problem, which is estimated by the Baum-Welch (B-W)
algorithm.

2 Channel Equalization as a classification task

System description

Let us consider the received signal ¢(¢) of an IST and
noise impaired system. In the general case, g(¢) can be
written as

g@) = fUI@), It —1),....,I(t— L)) +w(t) = (1)
e(t) + w(t)

where f(-) is the function representing the channel ac-
tion, I(#) is an equiprobable sequence of transmitted
data, w(t) is an AWGN sequence and ¢(t) is the noise-
less channel output sequence. In the special case of a
linear channel, g(¢) can be written as

L

g(t) = DRI =) + w(t) (2)

i=0

where h(7) is the channel impulse response.
Clustering Based Sequence Equalization

The equalizer, placed at the receiver part, aims at re-
covering the transmitted sequence of information bits
I(t), based on the corrupted received sequence g(t). In
[3] a Clustering Based Sequence Equalizer (CBSE) is
proposed which treats equalization as a classification
task. This method focuses on the clusters, which the
received data form. The received data samples are clus-
tered around specific points whose number and constel-
lation shape is determined by the spread of the channel
and the impairments characteristics [4]. Assume, for ex-
ample, D successive received data, in the absence of any
distortion, corresponding to M?P possible points in the
D-dimensional space (M is the size of the transmitted
data alphabet). Each point corresponds to one of the
MP possible realizations of the sequence of transmitted



bits: (I(t),...,I1(t — D 4+ 1)). If received data are cor-
rupted by AWGN, then the randomness of noise leads
to the formation of a cluster around each point. The
existence of ISI causes a movement and an increase of
the number of clusters. Specifically, for a channel with
spread L + 1 and for an M-ary alphabet the data vector
g(t) =[g(t),g(t—1), ..., g(t—D+1)]¥ leads to the forma-
tion of C = ME+P clusters. Each cluster is represented
by a suitably chosen representative, which is the noise-
less channel response vector in the D-dimensional space,
ie., c(t) = [e(t),....c(t — D+ 1)), with c(t) € {¢;,i =
1,...,C}, each ¢; corresponding to one of the possible
values of the sequence: (I(t),...,I1(t — L — D+ 1)).

Due to the interdependence that IST imposes on suc-
cessive received data, only specific transitions among the
different clusters are possible. Thus, CBSE employs a
Viterbi type procedure dictated by the specific transi-
tions among clusters. Assuming that data are treated in
groups of D, then, a MT+P~1 state trellis can be con-
sidered, where the state S(¢) at time ¢ labels the channel
memory: S(t) = (It - 1I{t—2)..I(¢t—L—D+1)).

In the Viterbi trellis diagram, the transition from a
state S(t—1) to a state S(¢) corresponds to the emission
of a specific cluster representative, indicated by the se-
quence of bits formed by the current state and the new
information bit transmitted. We call this sequence of
bits label and we denote it by: X (¢) = (J()I(t—1)...I(t—
L—-D+1)).

For the completion of the Viterbi Algorithm proce-
dure an appropriate distance metric is adopted (e.g.,
Fuclidean or Mahalanobis) in order to measure the dis-
tance among the received data and the representatives
of the clusters.

Training of the clusters is equivalent to finding the
correspondence between clusters representatives and la-
bels. In supervised equalization, during the training pe-
riod, a sequence of known information bits is transmit-
ted and each cluster representative is computed by a
simple averaging of all the data vectors, g(¢), belonging
to the respective cluster. However, in blind mode, no
training sequence is available and, thus, an appropriate
unsupervised technique should be employed to provide
the training of the clusters. In the proposed method, the
unsupervised clusters training is performed in two steps
a) clusters representatives identification and b) labeling
of them.

3 Unsupervised clustering

The task of clusters identification can be performed us-
ing various unsupervised clustering techniques. Typical
examples are : the isodata algorithm, [2], the neural gas
network, [1], a recursive dynamic programming proce-
dure, [5], etc. In this paper, the dynamic programming
procedure described in [5] is adopted.

In [2] and in [1] the clustering procedure is per-
formed using the two dimensional observation space

(D = 2) and the corresponding data vector is g(t) =
[9(t)g(t — 1)]¥. The two-dimensional representation of
clusters is required in [1] in order to determine the possi-
ble transitions among different clusters. In [2], the two-
dimensional approach 1s needed for avoiding the problem
of uncertainty arising from clusters which overlap in the
one-dimensional space. In the proposed algorithm, one
dimenstonal exploitation of the clusters s adequate, 1i.e.
(g(t) = [g9(t)]), since a) clusters transitions information
is not needed and b) overlapping clusters do not effect
the performance of the proposed method.

4 HMM and clusters labeling

Once the clusters representatives have been identified,
their corresponding labels have to be determined. For
this purpose, a discrete observations HMM 1is con-
structed utilizing the already identified values of clusters
representatives. The discrete observations HMM formu-
lated is characlerized by the following elements [6]:

1) The states of the model, which in our case are:

S(t) = (I(t — 1)...I(t — L)) (3)

where I(t) is the i.i.d. sequence of transmitted symbols
and L is the channel memory. For an M-ary alphabet,
the number of the states is N = ME, that is : S(¢) €
{1,...,N}.

2) The state transition probability distribution A =
a;;, where

a; = P[S@E+1)=j|S{t) =1, 1<ij< N (4)

In our case, a;; are known and are equal to 1/M, for an
allowable transition, or equal to zero, for a not allowable
transition. For every allowable transition (a;; = 1/M) a
specific noiseless channel output occurs. In other words,
each state transition specifies a cluster label. The cluster
labels are specified by:

X)) ={@®)..I(t—=1L)) (5)
with, X(t) € {1,...,C}, C = ML+l Assume, for ex-
ample, that L. = 1 and M = 2, then, transition from
state 1 (I(t — 1) = —1) to state 1 (I(¢t) = —1), defines
the label : ([I(¢)I(t—1)] = [-1—1]), which corresponds
to a specific cluster.

3) The distinct observation symbols per transition
V = {wp}, k = 1...C. These are assumed to be equal to
the clusters representatives.

4) The observation symbol probability distribution in
states transition ¢ to j. This parameter, in our case,
corresponds to the probability of a specific cluster repre-
sentative (symbol) to correspond to specific label (states
transition). For simplicity, we use indices of labels and
not of states transitions, since there is a unique cor-
respondence between labels and states transitions, as
stated earlier. Thus, this element is defined as :

bo(vr) = Plop observed |S(t) =i, St +1)=j] =

Ploi observed|X(t) =n], 1 <n, k< C, 1<i,j <N (6)



where n corresponds to the label that uniquely specifies
a state transition: from 7 to j.

5) The initial state distribution m; = P[S(1) = ¢] for
1<i<N

Due to the randomness of noise, the received data,
¢(t), in the channel output have not discrete values
(see eq.  2). In order to agree with the described
discrete values HMM, the noisy received data samples
are quantized to the value of the closest representa-
tive, and the sequence of quantized data is denoted by
the symbol y(¢). Hence, the quantized received data
form the discrete observations of the HMM. And, ac-
cording to the discrete observations model, we define as
ba(y(1)) = bn(vg) x 8(y(t), vy), with é(y(t),vp) = 1 if
y(t) = vi, and zero otherwise.

In the proposed blind channel estimation algorithm,
clusters’ labeling can be treated as an HMM learning
problem; that is, to model the unknown probability of
a specific cluster to correspond to a specific label as
an unknown parameter of the HMM, and then seek for
the optimal parameters of HMM which best match the
given observations sequence. A usual practice to han-
dle the learning problem in HMM, is the maximization
of the probability of the observation sequence of length
T:Y = (y(1),...,y(T)) given the model parameters (#),
that is the probability P(Y|#). The EM (Expectation -
Maximization) algorithm (or else the B-W reestimation
formulae) is a commonly used numerical scheme which
estimates the unknown parameters of an HMM. The re-
sulting ML estimate is given by : 6 = argmazs P(Y|6).
In our case, we define :

0 ={bp(vr), nk=1,..,C} (7)

These probabilities reveal the label of the clusters and are
expected to converge to 1, if a specific symbol (y(t) = cx)
corresponds to a specific label (n) otherwise they con-
verge to zero.

According to the above described model settings, the
maximization of P(Y|#) by means of the B-W algo-
rithm, leads to the labeling procedure described in the
followings:

Inwtialization

Take a block of T' received data g(¢) and quantize them
to their closest representative. Assign (randomly) the
representantives values to the HMM parameters: vy, for
k=1,..,C. Set N = ML C = ML+t b,(vp) = 1/C
and 7 = 1.
Set a;; = P[S(t+ 1) = j|S(t) = ] = 1/M if there is
an allowable transition from state ¢ to j, otherwise, set
a;; = 0. Set ay(i) = 1 for the known initial state i and
0 otherwise, fry1(j) =1 for j = 1...N.

Mazin part - Recursion
1) Use the forward recursion [6] to calculate ay(j) for
t=2,..,T+1,5=1,..,N
ar(j) = iy e (DPIS(L) = j|S(t—1) = ilba(y(i—1))
2) Use the backward recursion [6] to calculate 3;(¢) for

t=T,T-1,...,1,i=1,...,N

Bi(i) = 325 B (DPLS(E + 1) = j1S(1) = b (u(1))

3) Calculate the the probability of being in state ¢ at
time ¢, and state j at time ¢ + 1, given the model and
the observation sequence [7] :

&(if) = =x at(]if)azjany(t))r@t+l(j) :

Doica 2y @t(Daiba(y()Begr(d)

4) Finally, use the reestimation formulae to update the:
T—1 ..

bo0r) = L 0

Zt:l €i(1,4)

Repeat the recursion for the next block of T' (quantized)

data, until convergence.

Note that, in the procedure described above, in or-
der to simplify the presentation the assumption that the
initial state, S(1), is known, is made [6]. The general-
ization of the results to the case where S(1) is unknown
can be easily made : the algorithm is able to estimate

prior probabilities P[S(1) = ¢] [6],[7].

5 Simulations

Example 1 At first, a simple linear channel is con-
sidered to clarify the operation of the proposed al-
gorithm. The assumed channel has transfer function
H(z) =140.5z71and L = 1. The SNR is 20 dB. Trans-
mitted data are assumed bipolar (I(t) = +1, M = 2).
The clustering- HMM algorithm is as follows : a) The
unsupervised algorithm identifies the clusters represen-
tatives (i.e., ¢; = 0.4926, ¢co = —0.49, ¢ = —1.503,
cq = 1.498, with the number of data used: K = 200).
b) Next, the HMM is formed. We set N=2, ¢' =4 and
the number of data processed per recursion: 7" = 20.
The matrix of b, (vy) converge, in about 8 recursions, to
the following table:

Label Center
I(t) I(t—l) C1C2C3C4a
1 (-1-1) 0010
2 (-11) 0100
3 (1-1) 1000
4 (11 0001

From this table we can conclude the clusters’ labeling,
i.e., the representative ¢; has label [1 -1] etc. Once the
channel estimation procedure is completed the CBSE
can be used for signal detection.

Example 2 - Overlapping Clusters In this ex-
periment, data are assumed binary (M = 2) and the
channel is : H(z) = 0.5+ 0.7¢7* 4+ 0.5z72. This is a
high-ISI channel, resulting in overlapping clusters in the
one dimensional space [6]. Thus, instead of the 8 clus-
ters expected to appear (C' = 2P+l = 8 for I = 2 and
D = 1), only 6 clusters are observed. In this case, our
algorithm is as follows : a) Clusters representatives esti-
mation results in the following representatives (SNR =
20dB, K =200),(¢1 =.7T,62=.3,¢c3=—.7,¢c4 = —.3,
es = 1.7, ¢c¢ = —1.7). b) The number of HMM states is
N=4, and C' = 6. The matrix of b, (v;), forn =1,...,8,
k=1,...,6 converge to the following matrix (in about 7



recursions, with 7' = 40):
Label Center
I(t)l(t—l (t—?) C1C2C3C4C5Cq

~—
—

1 (-1-1-1) 000001
2 (-1-11) 001000
3 (-11-1) 000100
4 (-111) 100000
5 (1-1-1) 001000
6 (1-11) 010000
7 (11-1) 100000
8 (111) 000010

From this matrix we recover the labeling of clusters,
i.e., cluster representative ¢; (with value : .7) has two
labels, the [-1 4+1 +1] and the [+1 +1 -1], this is a
result of the symmetry of the channel which actually
causes the overlapping of clusters. The other labels of
the representatives are determined in the same manner.

From this example, we see that the situation of over-
lapping clusters does not cause problems in the suggested
algorithm. It should be emphasized that overlapping
clusters (usually resulting from symmetric channels) can
lead the cluster-based algorithms of [1] and [2] in incor-
rect clusters labeling. The algorithms of [1] and [2] need
the information of a starting point for thewr initializa-
tion. This starting point 1s a cluster that jumps to itself
and usually is the cluster which corresponds to a label
of same symbols (i.e. ([+1+ 1+ 1])if L = 2). However,
in the overlapping clusters case, a cluster (which corre-
sponds actually to 2 or more overlapping clusters with
different labels) can seem to jump to itself although its
label is not as described before. Thus, a false starting
point is assumed. Since, the subsequent procedure of
clusters labeling 1s dependent on the correctness of this
starting point - cluster, 1s apparent that this situation
can cause serious problems in the algorithms of [1] and
[2].

Example 3 - Nonlinear channel Consider for ex-
ample the channel with H(z) = 0.3440.8727140.342~2
and with the nonlinear function: g¢(¢) + 0.05g(¢)* —
0.1g(¢)>. In figure 1, we see the performances of three
equalizers : a) the proposed cluster-HMM blind equal-
izer, b) a CBSE with exact mapping available and
¢) a classical MLSE with channel estimation achieved
through an RLS algorithm. From the figure is appar-
ent that the performance of the proposed equalizer is
the same with the performance of the supervised CBSE.
Moreover, the performance of the proposed equalizer is
substantially better compared to the performance of the
conventional MLSE using training sequence.

It should also be noted that the proposed equalizer is
able to treat every type of channels nonlinearities. In
contrast, the equalizer of [1] and [2], due to the special
way of initialization that they adopt, constraint their
use only in monotonic nonlinearities.

The performance of the proposed algorithm has been
investigated on a variety of channels and for a num-
ber of signaling schemes. All the results indicate the
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Figure 1: Performance achieved for nonlinear channel
(example 3) o’ : proposed blind equalizer, ’ - *: CBSE
with known clusters centers, ’.> : MLSE with linear
channel estimator

robustness of the proposed scheme. The adoption of
one dimensional model in the unsupervised clustering
procedure gives complexity and convergence benefits to
the proposed equalizer compared with the correspond-
ing schemes of [2], [1]. In the above experiments chan-
nel order is assumed known. The problem of unknown
channel order 1s under investigation.
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