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Abstract| Multi-delay predictive FIR �lters utilizing a

small number of multipliers are proposed. These �lters

are shown to have substantially lower noise gain than

the standard minimum-length predictors using the same

amount of multipliers. These �lters are formulated for

both arbitrary-order polynomial and sinusoidal signal pre-

diction. The use of dynamic programming for the e�cient

optimization of these �lters is proposed.

I. Introduction

Several techniques have been developed for the design

and optimization of linear �lters capable of extrapolating

polynomial and sinusoidal signals. Among these are the
Heinonen-Neuvo predictors [3], frequency-response opti-

mized FIR predictors [5] and IIR predictors [4]. The

Heinonen-Neuvo predictors are a good prototype of pre-

dictive �lters but are inexible. The lowpass-predictors

have exible design methods for designing optimal pre-
dictors with various constraints but the limitations of the

underlying FIR structure cannot be overcome. IIR pre-

dictors o�er a more general structure for optimization

and good performance but currently they have to be op-

timized using general optimization methods.

In this paper we propose a structure for FIR predictors

where only the number of multipliers and the maximum

delay are limited, i.e. single-tap delays in a standard FIR

�lter may be replaced by multi-tap delays. A schematic

diagram of the structure is shown is Figure 1.

These structures can be e�ciently implemented e.g.
using signal processors where the number of multiplica-

tions is more critical the the number of delays. As we

will shorly see, this structure can signi�cantly reduce the

noise gain of the �lter when compared with the optimal
single-delay Heinonen-Neuvo predictors.

II. Formulation

In this section we formulate the design problem for

multi-delay FIR predictors for polynomial and sinusoidal
signals.

Consider �rst the case of polynomial prediction of order

L and prediction step p. Thus, when we �lter any signal
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Fig. 1. Direct-form structure of multi-delay FIR �lters. The delays
z�nk are integer delays, i.e. n

k
2 f1; 2; 3; : : :g.

of the form

PL(n) =

LX
`=0

�`n
`; �` 2 R (1)

we require the output y(n) to be PL(n + p), where p is

not required to be an integer. The �ltering operation for

linear FIR �lters of orderM can be expressed as an inner

product between the reversed input x(n) and the vector

of impulse response coe�cients:

y(n) = x(n)Th; (2)

where x(n) is the reversed input window

x(n) =
�
x(n) x(n� 1) � � � x(n�M)

�T
(3)

and h is the impulse response vector

h =
�
h(0) h(1) � � � h(M)

�T
: (4)



The constraint that the �lter h predicts correctly the
polynomial input frames

�
M ` (M � 1)` � � � 0`

�T
; ` = 0; 1; : : : ; L (5)

is enough to guarantee prediction of all PL(n) [5]. Here

we de�ne 00 = 1. Thus polynomial prediction can be
formulated as the requirement

P
T
h = p; (6)

where P is a matrix containing the reversed polynomial

input frames as columns and p is the vector of desired

outputs

�
(M + p)0 (M + p)1 � � � (M + p)L

�T
: (7)

The Heinonen-Neuvo predictors are now obtained as the

minimum-norm solution of the underdetermined (if M >

L) matrix equation (6), explicitly given by

h = P(PT
P)�1p: (8)

The constraint of sinusoidal signal prediction of known

frequencies can also be given in the form of (6). We re-

quire h to predict correctly any signal

Sm(n) =

mX
`=0

�` sin(!`n+ �`); (9)

where �` and �` are arbitrary constants and the frequen-

cies !` are known. Again, it can be shown that correct
prediction of the basic frames

sin(!`n); n = 0; 1; : : : ;M; ` = 0; 1; : : : ;m (10)

and

cos(!`n); n = 0; 1; : : : ;M; ` = 0; 1; : : : ;m (11)

is necessary and su�cient for the prediction of all Sm(n)

[2].

Using these formulations, we can state the problem of
multi-delay predictor design using matrix notation. Let

the maximum allowable �lter order (i.e. maximum delay)

be M . We seek a minimum noise gain multi-delay pre-

dictor using N multipliers. In (6) this means that we

constrain the vector h to have N non-zero elements.

This leads to a nonlinear optimization problem where

(at least implicitly) the following parameters have to be

found:

� the optimal delays, i.e. the delays of the non-zero im-

pulse response values.
� the optimal impulse response for these delays.

The second problem is readily solved using the formu-

lation above. Speci�cally, assume that the N delays of

the non-zero impulse response values of the polynomial

and/or sinusoidal signal predictor are n1; n2; : : : ; nN . By

taking into account the zeros in the impulse response vec-
tor, the polynomial prediction constraint matrix P is now

0
BBB@

(nN )
0 (nN )

1 � � � (nN )
L

(nN�1)
0 (nN�1)

1 � � � (nN�1)
L

...
... � � �

...

(n1)
0 (n1)

1 � � � (n1)
L

1
CCCA (12)

and the corresponding vector p is

�
(N + p)0 (N + p)1 � � � (N + p)L

�T
: (13)

Let us denote these by Pn1;:::;nN and pn1;:::;nN , respec-

tively. Again we can use these in equation (8) to �nd

the non-zero elements of the predictor impulse response
vector with minimum norm.

As an example, consider designing the minimum noise-

gain predictor of prediction step p = 1 for polynomials

of order L = 2 using just the delays 0; 1; 5; 6 and 10 and
with maximum order 10. Inserting (12) and (13) in (8)

results in the vector
�
0:9110 0:5302 �0:3041 �0:3404 0:2033

�T
;

(14)
which corresponds to the impulse response

h(n) =

8>>>>>><
>>>>>>:

0:9110 ; n = 0

0:5302 ; n = 1

�0:3041 ; n = 5

�0:3404 ; n = 6

0:2033 ; n = 10
0 ; otherwise

: (15)

This is actually the optimum �lter for the given con-

straints with 5 multipliers. The sinusoidal prediction case

is handled in the same manner by including only the ap-

proriate delays in the contraint matrix and desired re-
sponse vector.

The more di�cult procedure in multi-delay predictor

design is the determination of the optimal delays. In the

next section we propose the use of dynamic programming

for this task.

III. Using dynamic programming for delay

optimization

Dynamic programming (DP) refers to an optimization
method to e�ciently determine the sequence of optimal

choices for structured problems. Here we will concentrate

on �nding the optimal non-zero taps of a predictive �lter.

Let us now explain the procedure. Our problem is to

determine a subgroup of size N from the set of possible
delays 0; 1; : : : ;M . We de�ne a function F : X 7! R,

where X is the set of subsets of 0; 1; : : : ;M , which gives

the 'cost' of a subset of delays. This function is de�ned

by the minimum possible noise gain for each set of delays

and can be explicitly calculated for any x 2 X by

F(x) = kPx(P
T
xPx)

�1
pk

2 (16)

= p
T (PT

xPx)
�1
P
T
xPx(P

T
xPx)

�1
p (17)

= p
T (PT

xPx)
�1
p; (18)



TABLE I

DP algorithm for multi-delay predictor design.

DP delay optimization

Initialization:

compute all
�
M+1

L+1

�
different sets of L+ 1

delays into S
L+1

for i=L+ 2; L+ 3; : : : ;N:

for (n1; n2; : : : ; ni�1) 2 Si�1:
for j=0; 1; : : : ;M:

calculate optimal predictor h with

delays (n1; n2; : : : ; ni�1; j)
set NG(j)=noise gain of h

end

set k=index of the maximum of NG

set v=vector (n1; n2; : : : ; ni�1; k) in ascending order

set Si = Si [ v

store filter and noise gain corresponding

to these delays

end

end

find minimum of NG and corresponding filter

if the matrix (PT
xPx)

�1 is invertible, otherwise we de�ne

F(x) =1.

Denote by Xk the subset of X consists of the delay sets

with exactly k elements.

The algorithm keeps track of subsets of X , which are
increased in size. Let the number of columns in the con-

straint matrix P be L + 1. The algorithm is initialized

with all of the di�erent
�
M+1

L+1

�
combinations of picking

L + 1 delays from M + 1 positions, which are stored in

SL+1. Having determined the sets of i delays, for each
element x 2 Si, the value of

F(x [ d) (19)

is determined for all d 2 0; 1; : : : ;M . The minimum over

d is found and the set x [ d is added to Si+1.

The dynamic programming algorithm for determining

the best multi-delay predictor is summarized in Table I.

The number of function evaluations (�lter designs) re-

quired in the dynamic programming method is approxi-
mately

�
M+1

L+1

�
(N �L� 1)(M +1) whereas an exhaustive

search would require evaluating
�
M+1

N

�
�lters.

The cost function is invariant to the order of the argu-

ments. This is used to further reduce the computational

complexity by only adding to Si the delays which are

unique as sets. This is utilized in the algorithm by sort-

ing the chosen vector (x [ d) before adding it to Si+1.

Unfortunately we have not been able to prove that the

�lter resulting from the DP optimization is the true op-

timum for L > 0. The Bellman optimality principle does
not hold for the cost function F , since the optimal k de-

lays are not necessarily included in the optimal k + 1

delays. However, comparison of the DP solution and

the optimal solution for several hunderds of thousands

of cases with practical values of L and M has resulted

in no discrepancies, even with no structure in P and p.
This suggests that the DP algorithm may be used for

practical optimization if exhaustive search is infeasible

(i.e. M = 50, N = 25 requires � 1:26e14 function evalua-

tions, each requiring matrix inversion), but the optimality
is still an open question.

The case L = 0 (i.e. one constraint) for arbitrary P

(now a vector) and p (a scalar) is

argminv1;:::;vN2V
1

pT (
PN

n=1 vnv
T
n )p

(20)

= argminv1;:::;vN2V
1

kpk2(
PN

n=1 v
2
n)

(21)

= argmaxv1;:::;vN2V

NX
n=1

v2n; (22)

where V = fP1;P2; : : : ;PM+1g and it is required that

v1; : : : ; vN are all di�erent. The solution is to pick the

delays corresponding to the N components in P with

largest absolute values. Obviously the dynamic program-

ming algorithm will yield this solution, although it can
be obtained more directly as above. Interestingly, the

simpler one-at-at-time algorithm, where only one set of

delays is retained and updated with the optimal exten-

sion, will also work in this case but not (in general) for

L > 0.

IV. Design examples and results

A. 3-TAP PREDICTION

Let us �rst consider designing a predictor for second-
order polynomials with prediction step 1. Thus the min-

imum number of multiplications required is 3. Figure 2

shows the optimal locations of the 3 taps as a function

of the maximum predictor order. These always include

the 0-delay and maximum-delay taps. The noise gains
corresponding to these �lters are also shown in Figure 2.

We see a sharp decrease in the noise gain for multi-delay

predictors when compared to the minimum-delay predic-

tor (which is the �rst one in Figure 2). The amplitude
responses of some of the predictors are shown in Figure

3. Note the quasi-periodicity in the amplitude response

due to the multi-delay structure.

B. 6-TAP PREDICTION

The same design was carried out using a maximum of

6 multiplications. The results are shown in Figure 4. It

is noteworthy that the optimum delays 'jump' when the

maximum order increases from 10 to 11 and from 28 to

29. The reason for this is shown in Figure 5, where the
cost function is shown for each possible addition to the

set of delays 1; 2; 3; 18; 30. The nonlinear nature of the

optimization problem can be clearly seen (the abrupt dis-

continuities result from extending the �lter with a delay

that is already present).
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Fig. 2. Top: optimal delay locations for 3-tap prediction of 2nd-
order polynomials. The minimum- and maximum-delay taps
are always included. Bottom: noise gain as a function of the
maximum allowable delay, corresponding to the top �gure.
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Fig. 3. Amplitude responses of 3-tap predictive �lters for 2nd-order
polynomials with di�erent maximum delays. The noise gain
decreases with increasing maximum delay. At the same time,
the prediction bandwidths decrease as well. For the di�erent
maximum delays dmax, they are: 0:38� for dmax = 2, 0:10�
for dmax = 11, 0:03� for dmax = 35.

V. Conclusions

We proposed the use of multi-delay polynomial and

sinusoidal predictors which have desirable properties in

certain implementations. Closed-form formulas can be

used to determine the �lter tap weights for any given set

of delays. We proposed dynamic programming to solve
the nonlinear optimization problem of determining the

optimal set of delays and showed that the results suggest

the optimality of the method, although it is still an open

problem. Finally, practical design examples were given

which showed the bene�ts of using multi-delay predictors.
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