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ABSTRACT

A technique to integrate gradient-based and feature-

based modules to estimate the optical ow from a pair

of images is proposed. The integration strategy is based

on a Bayesian approach, where the optical ow is eval-

uated as the minimizer of a suitable posterior energy

function, containing all the gradient and feature infor-

mation on the problem. The capability of the technique

to constrain the displacement in the neighbourhoods of

motion discontinuities has been tested.

1 INTRODUCTION

Estimating the optical ow from an image sequence is

a very important task for all motion-based visual func-

tions [1].

The basic problem that must be solved in determining

optical ow is to register a pair of successive frames of

the sequence available. Two basic classes of approaches,

gradient-based and feature-based, have been taken into

consideration to solve this problem. The gradient-based

approaches are based on the assumptions of uniform illu-

mination, Lambertian surfaces, rigid motion and small

displacements, and look for a match between the two

frames by taking into consideration the gradients of the

image intensity function. The visual cues used for reg-

istration are pixel intensities. The output produced by

these methods is a 'dense' (de�ned for each image pixel)

map of displacement vectors. Image registration from

intensity gradients is an ill-posed problem, normally reg-

ularised by introducing smoothness constraints. As in

other visual problems, this is not su�cient to reach a

good solution, in that smoothing is not physically jus-

ti�ed where discontinuities are present. In this partic-

ular case, moreover, there are additional di�culties in

handling the occlusion zones, where the displacement

vector is not even de�ned. The presence of these zones

and the smoothness constraint cause signi�cant errors

in optical ow estimation, in that the errors are prop-

agated throughout the image. It is thus clear that this

problem should be further regularised. The additional

information to be introduced could be some piece of spe-

ci�c prior knowledge, additional sensor data, or comple-

mentary information coming from other computational

modules. As an early attempt, the use of discontinuities

has been proposed [2]. In [3] a gradient-based method

regularised by edge-preserving local smoothness is pro-

posed, where displacement discontinuities are detected

with the help of intensity discontinuities.

In the feature-based approaches, the visual cues used

for the matching procedure are high level features, such

as particular geometric patterns, which can be detected

in the di�erent frames with a certain con�dence. For

the case of features such as corners, the hypotheses on

which these methods are based are that any single cue

extracted from one image corresponds to the same phys-

ical point that is projected in the corresponding cue

in the other image. This means that, if the features

are carefully selected, the displacements evaluated are

highly reliable. On the other hand, the displacement

map obtained from a feature-based method is 'sparse'

(it is not de�ned for all the image pixels).

A way to overcome the drawbacks of both purely

gradient-based and purely feature-based methods, thus

producing dense and reliable optical ow maps, could

be to integrate gradient-based and feature-based ap-

proaches. For instance, this can be done by includ-

ing the feature-based information into a suitable en-

ergy function. An approach that explicitly addresses

this principle is proposed in [4], where the computa-

tional network is formed by a feature-based module and

a gradient-based module, which also uses prior informa-

tion on local smoothness. The geometric features taken

into account in that case are the intensity discontinuities

contained in both the data images, which are detected

and matched by means of a local analysis, under the

assumption of very small displacements. This feature-

based module, however, is only capable of estimating

the orthogonal motion component, because of the well-

known aperture problem, and this causes troubles where

edge motion has no orthogonal component.

To better constrain the motion �eld, we propose

herein to replace the orthogonal motion detector by a

computational module that estimates the complete dis-

placement vector for entire rectilinear segments. This



can be made by extracting segments whose ends can

be reliably identi�ed and matched in both images, thus

overcoming the aperture problem. The displacement

vectors thus calculated can be integrated in the energy

function derived from the gradient-based constraints.

An experimental evaluation of the better performance

of this method, when compared to the one proposed in

[4], is being carried out.

2 THE PROPOSED TECHNIQUE

2.1 Integration of gradients and features

The scheme adopted to integrate the di�erent computa-

tional modules is shown in Figure 1. The features con-

sidered at present are rectilinear segments, whose ends

are marked by highly reliable points, such as corners,

crosses or junctions. The �rst step to identify the useful

features is to extract line drawings from the gray level

or color images available. Since we limit our interest

to straight lines, this can be done by edge extraction

followed by a procedure that isolates the straight-line

segments from the edge map [5, 6, 7]. From the line

drawing we then extract, by graph search, the patterns

we are interested in. Finally, we have to match corre-

sponding patterns in the two frames. This can be done

by means of subgraph isomorphism [8, 9]. The validity

of our method is based on the hypothesis that any line

pattern extracted from one image does not change its

topology in the other image, and is related to a rigid

object. In this case, given the ends of a segment in one

image and the corresponding points in the other image,

we can easily evaluate the two components of the dis-

placement at these points and (by simple interpolation)

at each point in the segment. This process is performed

by the block \Feature-based motion evaluation" in Fig-

ure 1, which receives as its input the intensity edges,

extracted by an independent module. The values of the

displacements thus obtained will be used to constrain

the optical ow in the rectilinear moving edge zones, by

introducing them in the �nal energy function.

The \Gradient-based motion evaluation" module ex-

tracts the spatial and temporal derivatives from the

input sequence. It has been shown [4] that the gra-

dients and the geometric features are complementary

data. This means that the related constraints are valid

over separate zones of the ow �eld, namely, the smooth

zones for the gradients and the discontinuities and oc-

clusion zones for the geometric features. The selection

between these constraints is performed by the switch

shown in the �gure, which is driven by two binary vali-

dation factors, calculated as described in [10].

The fusion of the gradient- and feature-based infor-

mation is performed by the two interacting blocks \op-

tical ow" and \Motion discontinuities". The ow �eld

is modelled as a pair of interacting Markov Random

Fields: one is a continuous vector �eld representing the

displacements, and the other is a binary �eld represent-

Figure 1: Computational network adopted

ing motion discontinuities. The estimation is also sup-

ported by prior knowledge, namely, the smoothness con-

straint and some known geometric properties of the dis-

continuity set, enforced by means of specially designed

MRF potentials (see 2.2 below). In particular, some un-

likely con�gurations of the lines, such as double lines,

crosses and T-junctions, are discouraged in that their

appearance is rare in the images [11]. The intensity

edges help detecting the motion edges in that, as pointed

out in [2], motion discontinuities are likely to appear in

a subset of intensity discontinuities. For this reason, we

strongly discourage the formation of motion edges where

no intensity edge is detected.

2.2 The posterior energy

The energy function is built on the basis of Bayesian

integration among the various modules shown in Figure

1. In a discrete setting, the �nal form of our criterion

is:
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where: ! is the matrix of the unknown displacements;

 is the matrix of the three-valued (+1;0;{1) parame-

ters indicating the displacement discontinuities; f(s; t)

is the data image sequence; �g and �me are binary valida-

tion factors that mark the regular zones and the moving

edges, respectively [4,10]; � is the matrix of the binary

(+1; 0) intensity discontinuities, de�ned on the same

site set D as , and evaluated in advance by the mod-

ule \edge-extractor" in Figure 1; w is the moving-edge

displacement matrix, as calculated by the feature-based

procedure; parameters �1�4 are regularisation coe�-

cients, and � is a threshold for the creation of a dis-

continuity. The summation weighted by �1 is the data

consistency term. The terms weighted by �2 introduce

the feature-based information. The term with �3 en-

forces smoothness where there is no displacement dis-

continuity, and the term with �4 penalizes displacement

discontinuities that do not occur in intensity disconti-

nuities (see [2]). Finally, the last summation enforces

geometric constraints on the displacement discontinuity

curves; the functions Vc() are suitable potentials asso-

ciated to cliques c of displacement discontinuities. The

summations are performed over the clique sets shown

in Figure 2, associated with the displacement site set S

and the discontinuity site set D. A short explanation is

due on the meaning of the three values allowed for the

variables . As is seen from the summations weighted

by �2, if the absolute value of d is 1, then only one of

these summations takes a positive contribution from the

edge element d. More speci�cally (see again Figure 2),

if d = �1, the pixel s will be constrained to follow the

motion of d, whereas the pixel t belongs to an occluded

zone, and no motion smoothness is enforced between t

and d. The converse is true if d = +1: the pixel t be-

longs to an occluding zone and the pixel s belongs to an

occluded zone. If d = 0, both pixels s and t will follow

the motion, wd, of the edge element. This means that

no motion discontinuity is present across d.

The energy function contains all the information,

measured, evaluated, or available a priori on the prob-

lem, and realizes the integration among data �t, edge

extraction, graph matching, and prior information. The

di�erence between (1) and the posterior energy adopted

in [4] is that in this case the total displacement vector

is constrained onto the moving straight-line segments,

whereas in [4] each moving edge was constrained for only

the normal motion component.

This is just one possible attempt to integrate high-

level and low-level modules in solving a visual problem.

A more general approach could be envisaged by consid-

ering other features besides rectilinear segments. As an

example, suitable invariant measures on particular geo-

metric con�gurations could be exploited. This problem

is presently being studied.

Figure 2: Clique system

Figure 3: a) First input frame; b) result with no moving

edge constraint; c) result form minimization of (1); best

result from minimization of (1)

3 RESULTS

At present, the main goal of the experimental investiga-

tion is to evaluate the possible improvements obtainable

by using the complete line displacement instead of its

only normal component. In this section, we just show

some preliminary results. To minimize the energy in

! and , we adopted a simulated annealing algorithm,

with no concern with computational complexity, with

the aim at best approaching the global energy minimum.

To impose the constraint on orthogonal motion over

straight-line segments moving along their own directions

is equivalent to imposing no constraint. A comparison

between the two approaches is exempli�ed in Figure 3.



The �rst frame of the synthetic input sequence is shown

in �gure 3a). The only moving object in the scene is

the cube, which translates leftwards; its lower edge thus

translates along its own direction. To obtain the result

shown in Figure 3 b), no constraint was placed on this

line, and the optical ow there evaluated is a�ected by

considerable errors. In Figure 3 c) we show the result ob-

tained by constraining the total displacement along that

line. We can easily note that in this case the optical ow

on the lower edge of the cube is correctly evaluated, thus

demonstrating the validity of our constraint. Figures 3

b) and 3 c) were obtained by using the same values for

all the parameters involved in the calculation, with no

particular attention at optimizing their values. In �gure

3 d), we show the best result obtained by our method

after a careful choice of both the free parameters and

the annealing schedule.

4 CONCLUSIONS

A complete evaluation of the performance of the pro-

posed technique cannot be performed at this point. In-

deed, we do not know whether the advantages shown

over the approach with the only normal component con-

straint are worth the possible complications in the al-

gorithm. The zones where these advantages can be ob-

tained are normally rather restricted in comparison with

the entire solution �eld. A possibility to be taken into

consideration is imposing both the total displacement

and the normal component constraint. This can be use-

ful, in that the total displacement can be calculated only

where suitable features can be extracted, in our case

some rectilinear segments, whereas the normal compo-

nent constraint can be enforced everywhere the edge ex-

tractor �nds an intensity line. These two constraints are

thus not mutually exclusive, and can be both enforced

in their respective areas of validity. Another way to im-

prove the technique could be to identify other features

to be considered, based as an example on translational

invariants.

In parallel with these theoretical developments, the

feature-based module should be integrated in the over-

all procedure, and a fast minimization algorithm should

be selected, in order to be able to fully evaluate the

performance of the method.
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