
Robust Tracker of Small, Fast-moving Low-contrast Targets

D. Davies1, P. Palmer1, & M. Mirmehdi2

1School of Electrical Engineering, Information Theory & Mathematics,

University of Surrey, Guildford GU2 5XH, England

2Computer Vision Group, Dept. of Computer Science,

University of Bristol, Bristol BS8 1UB, England

ABSTRACT

We present a multiresolution adaptive wavelet transform
to locate small low-contrast targets. Our approach ex-
pands upon methods which use adaptive �lters to re-
move noise to produce a near real-time robust tracker
using a specially adapted Kalman �lter. This generates
a small set of hypotheses to test. Incorrect hypotheses
are removed using an interest operator founded on the
error covariance generated by the Kalman �lter. We
demonstrate the technique using some experimental re-
sults.

1 INTRODUCTION

We are interested in detecting long-range moving ob-
jects in FLIR images where the object may only be a few
pixels in size and has low contrast with its background.
Simple methods of image di�erencing are therefore not
appropriate. We need a more robust algorithm to cor-
rectly detect the object while it is still at long range,
and yet be simple to compute and be relatively immune
to noise.
Blostein and Huang [2] used sequential hypothesis

testing to examine candidate object trajectories and
tested sequentially for a shift in mean intensity in im-
age sequences. However, the technique requires hypoth-
esis testing and the examination of every pixel in every
frame of a sequence. Ffrench et al. [6] have developed
an improved 2-D adaptive lattice algorithm geared to-
wards ameliorating the image through the removal of
correlated clutter to enhance the detectability of small
objects. The 2-D adaptive lattice algorithm generally
removes the clutter such that the hypothesised object
of interest is left (depicting a stronger signal). They
compare their �lters against 2-D LMS �lters for clutter
removal in mainly simulated images, and they conclude
that while they obtain better results, the increased cost
in computational and algorithm complexity is consider-
able.

The authors of [2] have argued that there is a need
for an e�ective decision theoretic approach to the detec-
tion of small low-contrast objects. This paper attempts
to address this issue. We combine the use of the fast

wavelet transform for adaptive �ltering of images which
provides a multiscale representation for object detec-
tion. We detect objects of sizes in the order of 10 pix-
els, although the object size may, and usually would
be expected to change during the sequence. A Kalman
�lter is used to determine regions of interest which fur-
ther reduces the computational time for searching. The
method generates a hypothesis tree for the motion of the
target object across the image sequence which is pruned
using an interest operator based upon the Kalman �lter
error estimates. The whole process could act as a front-
end to a comprehensive target detection and recognition
system.

We demonstrate in this paper the successful tracking
of small objects, even with decoys in close proximity.

2 THE ALGORITHM

Wavelets are sets of orthogonal functions which have
limited spatial and frequency content and provide a mul-
tiresolution decomposition of a signal. Consequently
they are ideally designed to locate target objects of small
size in images.

The wavelet transformation of an image produces four
lower resolution images comprising of a coarser scale
space representation of the image and three di�erence
signals (see [10] for details). This decomposition has
proved useful for a number of applications of image pro-
cessing ([7]). For small objects we are particularly in-
terested in high pass �lters, but the most interesting
channel for our application is a high pass �lter in the
vertical direction and a low pass in the horizontal. This
allows us to reduce the e�ects of noise while still seeking
small scale rapid variation in greylevel in the direction of
principle change. We note that the same wavelet space
was used in [1] for detecting tanks in a rough terrain
scene.

From the wavelet transformation (WT) of the image
we compute energies in each channel and threshold to
identify possible targets. These energies are de�ned in
windows which are speci�ed by the scale of the target
object we are seeking. We assume this is known a pri-
ori. The wavelet transformation is therefore carried out



in overlapping windows and windows of high transform
energy are merged into a region which should cover the
target object.
Once targets have been found, using the energy

method described above, an estimate of the motion is
made based upon nearest neighbours in the subsequent
frames. Any hypothesised target that is insu�ciently
signi�cant is rejected. Once potential targets have been
tracked across three successive frames a Kalman �lter
(see [3]) is initialised to predict the subsequent mo-
tion. The Kalman model has been especially adapted to
produce reliable estimates of the motion, so that false
alarms can be excluded at a very early stage. The use of
the wavelet transform combined with the Kalman �lter
provides a very robust method for removing inaccurate
models. Even so, an interest operator is introduced us-
ing the same design principles as that in [4] to prune the
search tree of the hypotheses. This operator is based on
the error covariance generated by the Kalman �lter, and
has an exponential characteristic. This guarantees that
virtually all hypotheses apart from the correct one have
a very low interest level and are quickly rejected.
The Kalman �lter assumes the target adheres to a

motion where acceleration is constant over any three
consecutive frames. The Kalman state variable there-
fore comprises of the centres of mass (CM) of the object
over three consecutive frames. The interest operator is
de�ned as

I(�x;�y) = e�K (1)
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The terms �x;�y are the the di�erences in the x and
y coordinates between the target's CM as predicted by
the Kalman tracker and the observed CM of a candidate
object. The �x; �y terms refer to standard deviations
over previous predictions. The constant parameter � is
a measure of how far away the � terms are from the
previous observed errors in terms of multiples of stan-
dard deviations of those previously observed errors. As
� increases the �x;�y errors must be correspondingly
smaller for the same level of interest. This is because as
� increases, the interest function becomes more peaked.
The value � = 2 signi�es that I(�x;�y) gives good
response when the inputs are within 0.5 standard devi-
ations from the Kalman covariance.
Consequently, the longer the object is tracked well the

more robust the interest operator becomes in identifying
the true object in the presence of other close and/or
high contrast decoys, because the error behaviour itself
is modelled more consistently.

3 EXPERIMENTAL RESULTS

Figure 1 shows two frames from our �rst test sequence
of FLIR images in which a target moves from the left

side of the scene (starting from one pixel size) to the top
right of the scene (ultimately becoming about 40 pixels
in size) in a fairly sharp trajectory. Figure 2 shows the
detected object and it's tracked trajectory sequence. We
detect the target when it is 6-7 pixels in size. Figure
3 shows the pro�le of the object when it is far away.
We emphasise that these images have been considerably
enhanced to show the detail. The original FLIR images,
as used by the algorithm, had too small a contrast to see
the aircraft clearly. The white boxes are the borders of
the regions produced by the algorithm for covering the
object that is being tracked. The black crosses indicate
the positions of the predictions of the centre of mass of
the expected region in the next frame as formed by the
Kalman �lter.
Our wavelet algorithm projects the original image

onto its scale space representations (up to three levels).
The �nest wavelet signal must be used when the object
is far away and small. The level may be coarsened as
the object becomes larger on approach. Hypotheses at a
given resolution level are formed by windows (typically
from 4�4 to 8�8 pixels) applied to the relevant wavelet
space. Note that no wavelet synthesis is performed: we
are not concerned with image reconstruction, only in
using the wavelet analysis to suggest hypotheses in the
form of regions in the original image. A fast connectiv-
ity analysis algorithm is then applied to label the con-
nected parts of the chosen region, and these constituted
the hypotheses. The interest operator then guides the
Kalman tracker into making a decision as to which of
the hypotheses is most likely to be the target object.
Typically the Kalman �lter produced errors of the

order of a few pixels. We show in Figure 4 a plot of errors
in the Kalman prediction throughout the sequence.

(a) frame 28 (b) frame 60

Figure 1: Typical frames of a small, long-range target

In Figures 5-9 we show some results from another se-
quence where the airplane we are tracking encounters
another aircraft which could confuse the algorithm. The
images show that although many hypothesised targets
are generated, the use of our interest operator keeps the
algorithm focused on the correct target at all times. For
this sequence we used the wavelet coe�cients that are



Figure 2: Trajectory of low-contrast target

Figure 3: Pro�le of small object (6-7 pixels) in frame 32

only sensitive to horizontal features, because the back-
ground was relatively homogeneous and the small plane
has greater representation in this space.

4 CONCLUSIONS

Our algorithm combines the discriminating power of the
wavelet transform with a Kalman �lter to track the mo-
tion of small, low contrast objects in image sequences.
The method is robust in that the target is always kept
in focus, even when higher contrast decoys are present,
due to the interest operator. We can also track the ob-
ject when partial occlusion occurs using the predictions
from our adapted Kalman tracker; due to lack of space
this issue has not been dealt with here. More details
will be available in [5].

The method exploits the simplicity of the fast wavelet
transform and the robustness of the Kalman method.
We have developed a predictive model that produces
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Figure 4: Error between predicted and observed centres
of mass of object expressed in the number of pixels

Figure 5: Typical original frame (19)

reliable estimates of the target's motion.

The method also provides a `shape' of a region enclos-
ing the target object, which provides information about
the manoeuvring of the aircraft and its change in pose.
Shape characterization could be achieved by utilising
higher moment information about the target's centre of
mass. Shape information could conceivably be incorpo-
rated with the interest operator function, or retained
for further analysis by a subsequent pattern recognition
device.

The method can be combined with noise reduction al-
gorithms and/or in conjunction with the control mecha-
nism of the tracking IR camera. For example, it could be
used to zoom onto the target [8] to obtain more detailed
information to complete the object recognition process.
It would therefore also be part of the overall control of
the vision process [9].



Figure 6: Multiple hypothesis generation (frame 19)

Figure 7: Multiple hypothesis generation (frame 23)
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