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ABSTRACT
Object contours resulting from segmenting images or video
frames can be efficiently encoded using B-spline functions.
An unsolved problem is how to divide a given contour into
segments such that the resulting compression is optimal in
rate-distortion sense. In this paper we describe two
techniques for finding a close-to-optimal knot assignment.
The first technique prunes an accurate B-splines
approximation until the desired rate is achieved. The
second technique analyzes the curvature function of the
original contour to obtain a suboptimal knot assignment.
The resulting algorithms are compared experimentally.

I. I NTRODUCTION
The representation of object shapes, or contours, is a
research topic with a long history. Whereas contour
descriptors originally aimed at reliable recognition and
comparison of shapes in a variety of robot vision problems,
an additional constraint has emerged in the context of
object-based image and video compression for
communications and multimedia. In these applications the
efficiency of a particular descriptor is also highly important,
both in terms of the average bit rate per contour pixel
(BPCP) as well as the computational complexity of the
encoding and reconstruction process. Though thorough
perceptual studies have not been carried out to date, the
general feeling is that slightly lossy compression is
acceptable in compressing object shapes at the advantage of
a higher compression factor. Two categories of shape
descriptors have been studied primarily, namely [3-7]:

· chain codes and their descendants,
· polynomial functions.

Most of the existing techniques share the drawback that
explicit control of the encoded bit rate is not possible. Since
compression systems have to be able to trade-off the bit rate
and resulting distortion among the various types of
information to be encoded for each object in an image or
video frame (shape, texture, motion), contour compression
methods should also be equipped with a possibility for bit
rate control.

In this paper we consider the problem of representing a
given contour by a collection of uniform cubic B-splines.
The basic idea is that segments of the original contour are
approximated by third order polynomial functions (in x and

y coordinate). This approximation is such that the individual
polynomial functions are connected and smooth. It has been
shown in [1,2] that once the original contour is divided into
segments, the optimal MSE spline approximation of this
contour can be found by solving a set of linear equations.
Therefore the problem that we concentrate on in this paper
is the following: “How should the original contour be
broken up into segments such that a (close to) rate-
distortion optimal contour compression results.” The points
where two adjoining segments meet are called knots. The
optimal determining of the knot locations is not a trivial
problem since the possible number of ways to divide a
given contour into n segments is enormous. Furthermore, it
is difficult to predict the rate of the resulting B-spline
approximation if an arbitrary division of the original
contour is taken.

In Section II of this paper we first present some
background information. Then we propose two techniques
for addressing the knot assignment problem. The method
described in Section III is based on pruning spline segments
from an initially very accurate (high bit rate, low distortion)
splines approximation. This elegant approach is purely
driven by the desire to obtain a rate-distortion optimal
approximation. In Section IV we then continue to propose a
more heuristic, but computationally far more efficient
method by carefully analyzing the curvature function of the
original contour. The two techniques are experimentally
compared in Section V.

II. B- SPLINE BACKGROUND
We assume that the original (closed) contour is given as an
ordered set of M (simply) 8-connected pixels, denoted by
{ S1,S2,...,SM}. This contour is divided into n segments, and
each segment Ci(u) is approximated by a uniform cubic B-
spline [1,2]:

   [ ] [ ]C u
x u
y u

u u u P P P Pi
i

i
i i i i

T
( )

( )
( )

, , , ] , , ,=








 = − + +

3 2
1 1 21 M . (1)

Here M  is the matrix with spline basis functions, and Pk =
[Pk(x), Pk(y)] refers to the coordinates of the k-th control
point of the spline approximation. The term uniformity
comes here from the fact that in segment i the spline u-
parameter runs from [i-1,i]. Uniformity reflects therefore



only the parameterization of the spline functions, and not
the actual length of the spline segments.

If we now assume that the attribution of the parameter u
to the original contour points Sj is known, i.e. each pixel on
the original contour has been assigned a u-value, then we
can find the n control points Pk such that the MSE distortion
between approximating spline and original contour pixels is
minimized [1]. Clearly the attribution of the u-parameter –
and consequently the division of the original contour into
segments – is the crucial step prior to the actual
computation of the control points. In the literature, several
possible parametrizations can be found, for instance
uniform, chord length, centripetal or Foley parametrization
[10]. None of these techniques, however, takes the resulting
rate and distortion sufficiently into account. In the following
two sections we therefore propose alternative methods to
break the original contour into segments.

III. B-S PLINE PRUNING
In our first approach [8], we start out with an initial
approximation of the original contour using a large number
of segments, i.e. a virtually error-free contour
approximation. There are maximally as many spline
segments as there are contour pixels (M). We have,
however, experimentally determined that a sufficiently large
number of initial segments nini is:
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Subsequently, the initial u-parameter attribution is:
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Given this initial assignment, the B-splines approximation
can be determined, yielding a set of control points
{ P1,P2,...,PP}. The result is a very precise approximation
requiring n B-spline segments and n control points. The
resulting B-splines functions are continuous in x and y.
Although the final result of the contour compression has to
be a discrete contour, we do not convert intermediate B-
spline approximations to discrete contours but keep them as
continuous functions instead, such that we can more
accurately measure the distortion between original and
compressed contour.

We then eliminate co-linear control points in the initial
approximation. If N>6 control points are approximately on
a straight line, then N-6 intermediate control points can be
eliminated without changing the B-spline approximation.
Removing co-linear control points does not change the
distortion but does decrease the number of spline segments
– and therefore the bit rate.

The bit rate of the resulting initial B-splines
approximation is most likely too large. To achieve the
desired bit rate, the set of approximating B-splines is pruned
iteratively, in the sense that the number of spline segments
is decreased iteratively by merging two adjoining segments.

For each pair of adjoining segments the decrease in bit rate
DR and increase in distortion DD is calculated if the
segment pair would be replaced by a single segment. Then
those two adjoining segment are merged for which the ratio
|DR/DD| takes on the largest value. The rate calculation is
based on first order DPCM combined with Huffman
encoding of the control points, and the distortion is the
quadratic (MSE) distance between original and
approximating contour. This pruning process is repeated
iteratively until the desired rate has been achieved.

The above mentioned criterion for merging adjoining
segments in combination with the convex nature of the rate-
distortion curve of the splines approximation guarantees a
solution that is optimal in rate-distortion sense. However,
the rate-distortion optimality also requires that after
merging two segments, a new u-parameter attribution and a
new least-squares B-splines approximation of the original
contour should be calculated. Consequently, after each
pruning step the effect of merging adjoining segments
should be recalculated entirely. Since these steps are the
most computationally expensive parts of the algorithm, we
introduce two suboptimal strategies which reduce the
complexity significantly:

· in a single iteration multiple segments (K) are
pruned in the order of decreasing |DR/DD| ratio,

· after pruning one of more segments, the B-spline
approximation is only locally recalculated.

Every now and then a “global” recalculation of the entire B-
spline approximation has to be carried out to correct the
“drift” effects of the local recalculations of the B-spline.
The resulting iterative scheme is shown in Figure 1.

The frequency of the global recalculation and the number of
segments that can be pruned in a single iteration may
greatly influence the degree of suboptimality. We have
experimentally studied the influence of these parameters on
a variety of contours [8]. As an example, Figure 2 shows
(for a case with a prescribed distortion) the bit rate as a
function of the number of prunes per iteration and as a
function of the periodicity of global recalculation. We see
that below approximately 10-15 prunes per iteration and a
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Figure 1: Block-diagram of iterative pruning of spline
segments.



periodicity of smaller than n/10, the resulting bit rate
fluctuates randomly. This indicates that for those parameter
choices the proposed suboptimal strategies do not
compromise the optimality of the solution significantly.

IV. A NALYZING THE CURVATURE FUNCTION
If one analyzes the knot assignments resulting from the
pruning approach described in the previous section, it
shows that

· many of the knots are located closely to or at
positions on the contour where the curvature has
extremes,

· usually each segment contains one curvature
extreme.

Figure 3 illustrates these effects. This observation leads to
the idea of making the knot assignments dependent on the
curvature of the original contour right from the beginning.
We will initially position a knot at the location of each
curvature extreme. We first calculate the curvature function
[9] of the original contour, defined by:
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The curve of which the curvature is calculated, is assumed
to be equidistantly resampled yielding x(t) and y(t). The
parameter t indicates arc length along the contour. The
subscripts in (4) refer to their first and second derivatives.
As mentioned above – depending on the desired bit rate –
the curvature should have a few curvature extremes (few
knots, few segments, and therefore a low bit rate) or many
extremes (high bit rate). To control the bit rate, we need to
control the number of extremes. We do this by smoothing

x(t) and y(t) using a Gaussian kernel gt(t,s) of variable
width s.

The parameter s now controls the bit rate. In (4), the
derivatives are subsequently replaced by their smoothed
versions, for instance xt(t)=x(t)Ägt(t,s). The appropriate
value of s is determined as follows. Starting with the initial
value of s, we calculate the derivative of the curvature
function k

s
(t). We count the number of zeros of k

s
(t), and if

it is larger than the desired number of segments, we increase
s by sstep, otherwise we decrease s by sstep. This (global)
search procedure is repeated until the smallest s, which
results in the desired number of curvature extremes, is
achieved. This algorithm is computationally efficient,
because it requires simple 1-D convolutions and typically
less than 10 iterations, and it ensures, that the resulting
curvature function contains only the desired number of most
prominent features.

For a calculated value of s and (smoothed) curvature
function, the initial division of the contour into segments
assigns a knot to each curvature extreme. Then, for each
initial segment, its length and the integral of |k(t)| is
determined. Based on these two measures segments are
nominated for merging or splitting. The splitting and
merging procedure uses only curvature information, and the
following two additional constraints:

· each resulting segment may have no more than one
curvature zero crossing,

· the quotient of the lengths of the adjoining
segments should be smaller than a given threshold.

If the integral of |k(t)| and length of the segment i exceed the
average values, then the segment is nominated for splitting,
and the measure of adequacy sai is calculated:
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If the two adjoining segments i, j do not include any
curvature zero crossings, they are nominated for merging,
and the measure of adequacy mai is calculated:

( )

( )

ma
t t t t

t

t t t t

t

i

i j i j

n
n

i j i j

n
n

=
−

+
+

max( ( ), ( )) min( ( ), ( ))

max ( )

max( ( ), ( )) min( ( ), ( ))

max ( )

κ κ κ κ

κ

κ κ κ κ

κ

1

2

(6)

The merging and splitting lists are sorted according to the
mai and sai, but the actual number of performed mergings
and splittings depends on the desired number of segments
(bit rate). The above criteria are clearly much more heuristic
than the ones in Section III, but the entire process is
computationally far less expensive.
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Figure 2: Illustration of the effects of periodicity of
global optimization (top) and number of prunes per
iteration (bottom, n is the current number of spline
segments) on the compression performance.



The final step of the algorithm is B-spline control point
calculation. We assign a parameter (u) to each point of the
original contour, and the control points are calculated by
solving the matrix equation (using QR decomposition). The
actual distortion and bit rate of the approximation are
calculated, and if they do not meet the requirements, the
algorithm starts again, using adjusted input parameter
(number of segments).

V. EXPERIMENTAL COMPARISON
We have experimentally compared the two proposed
methods for knot assignment. Figure 3(a) illustrates the final
location of the knots (vertical lines) of the pruning approach
drawn in the curvature plot of the splines approximation,
while Figure 3(b) shows the resulting knot assignment of
the curvature analysis approach drawn in the curvature plot
of the smoothed original contour. Figure 4 shows the
reconstructed splines approximation. Clearly there is a lot
of correspondence between results. Computationally,
however, there is a difference of a factor 50 to 150 in favor
of the curvature analysis approach. Finally, Figure 5 shows
the realized bit rate versus (MSE) distortion for the two
proposed techniques.
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Figure 3: Curvature function based on (top) splines
approximation, (bottom) smoothed original contour, and
location of knots for (top) pruning and (bottom) curvature
analysis approach.
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Figure 4: Spline approximation based on knot assignment
by segment pruning (left) and curvature analysis (right).
Knot locations are indicated by + signs.
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Figure 5: R-D performance of the two proposed methods,
(a) B-spline pruning, (b) curvature analysis approach.


