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ABSTRACT

This paper presents work on the use of segmental modelling
and phonetic features for phoneme based speech recognition.
The motivation for the work is to lessen the e�ects of the IID
assumption in HMM based recognition. The use of phonetic
features which are derived across the duration of a phonetic
segment is discussed. In conjunction with the use of these
features, a hybrid phoneme model is introduced. In a clas-
si�cation task on the TIMIT database, these features are
capable of outperforming standard HMM. The extension of
the work to recognition is presented in detail. The challenges
are identi�ed and a novel algorithm presented for recognition
based on phonetic features and the hybrid phoneme model.
The approach is built around a segmentation hypothesis ap-
proach employing pruning at a number of levels.

1 INTRODUCTION

HMMs have now been �rmly established as the most widely
used and successful acoustic model for speech recognition.
The extent of their popularity stems largely from the exis-
tence of e�cient mechanisms in Baum Welch Re-estimation,
the Forward Backward Algorithm, and Viterbi Decoding for
both training and recognition. This strongly established sta-
tistical framework has thus become the preferred foundation
for further work on improving the performance of speech
recognition systems. The successive states of a HMM model
the temporal evolution of a set of observations derived from
the original speech wave. However, within each state the ob-
servation vectors are assumed to be independent and identi-
cally distributed (IID). Thus the probability of an observa-
tion is only dependent on the current state and not on any
previous observation, though it is clear that successive vec-
tors will in fact be highly correlated. The IID assumption is
clearly violated and therefore an obstacle in achieving higher
performance in HMM based speech recognition. Attempts
can be made to lessen the e�ect of this IID assumption by
incorporating temporal information into the actual feature
vectors and by extending conventional HMM models.
The use of dynamic coe�cients is a well established ap-

proach to extending conventional feature vectors to include
temporal information. Much research has been directed to-
wards explicit methods of including temporal correlation in
the actual HMM framework to overcome the IID assump-
tion. In [8] and [9] the probability of a feature vector is
conditioned on the previous frame. Work by Ming et al [7]
has extended the inter-frame dependence model to account

for the correlation dependency structure both forwards and
backwards in time. An alternative approach at a model level
to overcome the weaknesses of the IID assumption has been
the use of segmental HMMs. The essence of segmental HMM
lies in the association of states with feature vector sequences
rather than with individual frames. In [2] the segmental
HMM has an underlying semi-Markov process which models
speech at a segment level with separate models then used at
a state level to model the so called extra-segmental and in-
tra segmental sources of variability. Both a static and linear
segmental model have been explored. In [3], the stochastic
segment model is used to model variable duration phonemes
by using a �xed length representation of a variable length
sequence of frames.

2 PHONETIC FEATURES

Conventionally, features are extracted on a frame by frame
basis with heavy overlap between successive windows. The
current work instead proposes that phonetic features be cal-
culated over the duration of a phoneme in order to capture
the transitional dynamics in that segment. The use of such
features was �rst proposed in [1]. For a given unit of speech
of length T frames, identi�ed as a phonetic segment, the
phonetic features for that segment are derived as

Y = ATX (1)

where X = [xt; :::; xt+T�1] is the segment and AT is a trans-
formation dependent on the segment length T . Here, AT is
the variable length T by N DCT used to decode the tran-
sitional dynamics across the duration of the phonetic event.
N denotes the number of features in any vector xt. Phonetic
features thus yield a �xed length representation of a phoneme
irrespective of the original frame length of the segment and
are derived via a DCT on the stacked cepstral vectors as
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normalising factor is introduced to take into account

the variable length of the segment. The phoneme feature
matrix is then made up of M of the T columns of the trans-
formed matrix with N features in each column. With the
phonetic features derived from the original cepstral coe�-
cients as described, the phonetic features are a compressed
representation, having a measure of the average of each co-
e�cient and the rate of change at di�erent rates over the



duration of the segment. A mixture Gaussian density is used
to model the phonetic features distribution. This is closely
related to the use of cepstral-time matrices with a variable
length transform matrix. The use of cepstral-time matrices
has proven highly successful in isolated word recognition [2].

3 PHONETIC MODEL

The most widely employed HMM for modelling monophones
in speech recognition, is the 3-state left to right model with
self loops permitted. A new hybrid model is proposed where
3 states are used, but the beginning and end states are used
to model the transitions between phones, and the middle
state is intended to model the phonetic features derived
across the phoneme. One potential advantage of this is
that co-articulation e�ects at the beginning and end of a
phoneme, where the actual distinction between successive
phones may be fuzzy, are not considered in deriving the seg-
mental phonetic features. With this possible e�ect removed,
the phonetic state is dedicated to modelling the phonetic
event proper.
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Figure 1: Proposed Phoneme Model.

3.1 Computation of Probabilities

The question arises, given an observation sequence X =
[x1:::xT ] and a set ofK phonememodels �K = [�1:::�K ], how
to e�ciently compute P

�
Xj�K

�
and identify the sequence of

phonemes generating that sequence. The score for a segment,
when employing the three state phonetic model, becomes

P (Xj�) = P (x1jsb)P (Y jsp)P (xT jse)P (T j�) (3)

for a particular phoneme model �, where Y is the trans-
formed representation of [x2:::xT�1]. The quantity P (T j�)
denotes the probability of duration T for that phoneme.
It is clear that there are distinct elements contributing to
the overall score: the contribution of the beginning and end
frames, the phonetic features score and the duration term.
This presents the possibility of a hierarchical approach to
the evaluation of a segment, discussed in later sections.

4 RECOGNITION AND THE PHONETIC

MODEL

4.1 Classi�cation: Known Segmentation

The phonetic model can be readily employed where the
phoneme segment boundaries are given. Classi�cation in-
volves simply transforming the segment to yield the phonetic
features and identifying the phoneme as

b� = argmax
�

P (x1jsb;��)P (Y jsp;��)P (xT jse;��)P (T j��)

(4)

This enables a direct comparison of the performance of the
phonetic features compared to standard cepstrum using �rst
and second order derivatives. Depending on the number of

columns of the cepstral time matrix preserved and the num-
ber of frames in the phonetic segment, a signi�cant data
compression can be achieved. For instance, for a typical seg-
ment of 100ms, a typical cepstrum representation of this may
be at a 10ms frame rate with 39 features in each frame. The
phonetic representation of this segment may be between just
26 and 78 features for the entire segment.

4.2 Recognition: Unknown Segmentation.

The preliminary di�culty in the use of the proposed pho-
netic model for recognition is that the phonetic segment
boundaries needed for the derivation of the phonetic fea-
tures are unknown. Thus any recognition strategy must
involve, at some level, the hypotheses of possible phonetic
segments lengths and subsequent evaluation of the sound-
ness of the hypothesis. Previous approaches to the task of
recognition for segmental models have employed dynamic
programming techniques [3], split and merge algorithm [4]
and a segmentation-�rst strategy[5]. In the context of the
phonetic model many of the challenges are similar:

� Segment boundaries are not available.

� For a hypothesised segmentation, feature frames are no
longer time synchronous and thus Viterbi decoding can-
not be employed.

� The number of possible segmentations grows exponen-
tially becoming computationally unmanageable.

The computational requirements of an exhaustive eval-
uation of segmentations must be avoided. The proposed
method is based on hypothesising segments to expand a pos-
sible network while employing an intelligent pruning strategy
to control the potential exponential growth of the resultant
network.
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Figure 2: Segmentation Network.

The set of segmentations for a test sentence can be arrived
at via two distinct routes: sequentially or in parallel as can
be seen from Figure 2 where �1; �2; �3 represent the suc-
cessive phonemes for the sentence. The duration (denoted
� inthe diagram) and identity (denoted �) of each segment
is hypothesised with the duration varying between a global
maximum and minimum tmaxand tmin. In seeking a pruning
regime to reduce the overall number of segments evaluated, it
becomes clear that a hybrid method encompassing elements
of both a parallel and a sequential evaluation of segments is



suitable. Upon enabling pruning, only a controlled number
of candidates and durations survive for a segment. In the
example shown, only the best two candidates are preserved.
In this way the number of branches growing at each point
is signi�cantly reduced. This is demonstrated in Figure 2
where a segment is examined and a decision made to the
most likely duration and identities of that phoneme. The
successive segments are hypothesised based on the possibil-
ities for the previous segment. Any hypothesised segment
start time can be considered as establishing a node in a seg-
ment network. Phonemes of particular duration establish
branches or tokens in the network possibly leading to new
nodes. Hence possible paths through the network emerge.
This is shown at the node and branch level in Figure 3. The

(a) Active Node Set (b) Possible Tokens (c) New Active Node Set

Figure 3: Emerging Network

basis of the approach is to employ pruning at two distinct
levels: the �rst when hypothesising branches and new nodes,
and the second through deactivating emerging paths which
are unlikely when compared to other paths.

4.2.1 Branch Level Pruning

Any segment in the network will have a number of possible
start times or nodes which have been previously established
as the most likely end points of the segmentation of the sen-
tence into n � 1 segments, Figure 3(a). The duration and
identity of segment n, given this set of possible start times
must be subsequently hypothesised. To reduce computation,
it is undesirable to calculate the likelihood of all phonemes of
all possible duration to identify the most likely candidates.
Instead a hierarchical strategy can be employed alongside
using indicators of match for the phonemes.

For a given node, a pointer of the potential soundness of
match of the models to the data is taken. This can be done
on the basis that some of the candidates will produce a bad
match to the data regardless of segment length. From the
duration statistics gathered on the TIMIT database, it is
possible to model the duration of each phoneme with a gam-
madistribution varying about an average duration. By tak-
ing the start time and hypothesising each phoneme to have
a possible set of three to �ve di�erent durations somewhere
between their minimum and average duration, an initial es-
timate of how well the data matches the model is possible.
For this �rst evaluation, durations greater than the average
for each phoneme are not considered. This initial evaluation
is used then to eliminate models from further evaluation that
demonstrate a poor match to the data while preserving can-
didates which are more likely to demonstrate good matches
at di�erent durations.

At this point, the number of models being considered has
been signi�cantly reduced, and the best duration for each
of the surviving candidates can be examined in �ner detail.
For each candidate, the duration which maximises the likeli-
hood for that phoneme is found by allowing the duration to
vary between the minimum and maximum duration for that
candidate. To further reduce computation, this need not be
examined at a resolution of each possible duration as each
frame may represent as little as 1ms. In this way a number
of most likely branches for that node are arrived at. When
all nodes or possible start times for a segment are examined
the situation as in Figure 3 (b) arises. When the number of
possible new nodes exceed a prede�ned maximum number
of nodes and thus paths which can be kept active simulta-
neously, the second form of pruning, node level pruning, is
enabled. This maintains the network at a manageable size.
In the example shown, the number of possible new nodes is
sixteen but the maximum number of parallel paths is set at
eight. Thus the performance of each path is examined to
determine the paths to preserve.

4.2.2 Node Level Pruning

The aim of pruning at this level is to deactivate paths in
this growing tree which are highly unlikely when compared
to more likely emerging paths. In conventional HMM recog-
nition, the Viterbi decoding is often implemented via a to-
ken passing paradigm whereby pruning out unlikely paths
is straightforward as it involves investigating all paths up
to the current time instance, and deactivating those which
have fallen a threshold below the best or average path and
are unlikely to recover in subsequent evaluation. The paths
can be compared on the basis that they represent a route
to a common end point. If all hypotheses for a segment are
worked out in parallel as shown, the number of segments
while the same are not representative of an equal number of
frames. Further, by transforming a variable length segment
into a �xed length representation, the dynamic range is ef-
fected: the dynamic range for the phonetic model becomes
constant for a segment which is of variable length. This con-
tributes to a di�culty in comparing paths. One solution to
this is to compare alternative paths on an average score per
phone basis rather than absolute likelihood and to prune out
unlikely paths based on this measure. This should also help
prevent a bias towards segmentations containing fewer seg-
ments of longer duration, a problem reported in [2] and [3].
Another issue is the possibility of re-merging paths. Quite
often, distinct paths will re-merge at a later stage. Thus be-
fore deactivating unlikely paths, merges must be identi�ed
as it would be undesirable to keep two copies of one path
to the detriment of exploring another possible path through
the network.
In this way, the identity and duration of each segment

in turn is hypothesised until each active path terminates in
the �nal frame of the test sentence. Again paths may be
compared on an average score per phoneme basis rather than
the overall score for a segmentation, allowing segmentations
comprising of a di�erent number of hypothesised phonemes
to be compared.
In the early stages of the segmentation, it is important

to keep as many alternative paths active as possible as it is
here that the e�ect of eliminating a good segmentation which
has scored poorly would have the most serious consequences.



Thus particularly for the �rst segment, it would be preferable
to keep more than the demonstrated two best branches per
node. Also for many databases such as the TIMIT database,
network attributes such as the fact that each sentence begins
and ends with silence can be exploited.

5 EXPERIMENTAL RESULTS

Baseline experiments in classi�cation were performed on the
39-phoneme set from the TIMIT database. Classi�cation ex-
periments were performed on the full training and test sets as
recommended in the TIMIT corpusdocumentation. 39 fea-
tures were used, comprising 13 mel-frequency cepstral coef-
�cients with �rst and second order derivatives. A frame rate
of 5ms andwindow length of 25.6ms were employed. Each
phoneme was modelled with acontext independent 3 state
left to right HMM with 12 mixtures per state. The classi�-
cation rate was 66.40%.
Experiments were performed to investigate the e�ect of

increasing the number of phonetic features retained for a
segment. As described in earlier sections, when deriving the
phonetic features, M of the T columns of the feature ma-
trix are preserved. Classi�cation experiments were carried
out where an increasing number of columns were presrved.
Typical results are shown in Table 1. These experiments
were performed using MFCC features derived at a frame rate
of 2.5ms. The results are shown for window lengths of be-
tween 12ms and 25ms. Only the phonetic features were used
for classi�cation rather than the hybrid model. For classi-
�cation, the contribution from the begining and end state
would be constant for a constant frame and window length
and thus Table 1 demonstrates the discriminative ability of
the phonetic features alone.

Columns Preserved: 0-1 0-2 0-3 0-4

12ms, 15 mixtures 57.95% 61.79% 62.76% 62.51%

12ms, 24 mixtures 58.61% 62.68% 62.76% 62.51%

20ms, 15 mixtures 58.09% 61.86% 62.29% 61.98%

20ms, 24 mixtures 58.09% 62.94% 63.35% 63.37%

25ms, 15 mixtures 58.18% 61.49% 61.96% 61.63%

25ms, 24 mixtures 58.77% 62.83% 63.44% 63.04%
Table 1: E�ect of using Increasing Numbers of Phonetic Features.

It is interesting to note that the performance starts to
decrease when more than four columns are preserved (beyond
column 3). A longer window length gave better performance
but there was little di�erence in the results at 20ms and
25ms. The best performance was achieved using three and
four columns.

No.Mixtures %Classi�cation

15 65.79

24 67.03

28 67.40
Table 2: Performance of Phonetic Model for Classi�cation.

The performance of the phonetic model was investigated us-
ing a frame rate of 2.5ms and a window length of 20ms for
the original MFCC features. Columns 0-2 were preserved
as phonetic features. Table 2 shows the classi�cation per-
formance of the model. The �gure of 67.40% demonstrates
that the phonetic features and model are capable of matching
the performance of standard HMM of 66.40% using �rst and
second order time derivatives. Experiments are on-going to

investigate the performance of the recognition strategy pre-
sented. The e�ects of varying the number of active paths
maintained, the number of tokens preserved for any node in
the network and the decision mechanism for pruning paths
are being examined in detail.

6 CONCLUSIONS

The use of phonetic features and a hybrid phonetic model has
been proposed. It has been demonstrated that the phonetic
features and models are readily employed for classi�cation
where segment boundaries are given. Experimental results
demonstrate that these features and models can give im-
proved performance over standard HMM in a classi�cation
task on the TIMIT database. A novel approach to recog-
nition has been presented and the di�culty of preventing
exponetial growth of a segmentation network has been ad-
dressed via a multi-level pruning approach. The method en-
compasses both the approaches of segmental modelling and
dynamic features to overcome the IID assumption in stan-
dard HMM. Further experiments are on-going in assessing
the performance of the recognition algorithm.
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