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ABSTRACT

This paper addresses the equivalence of input-output
mapping functions between the Linked Predictive Neu-
ral Networks (LPNN, [5]) and the Hidden Control Neu-
ral Networks (HCNN, [2]). Two novel theoretical results
supported withMathematica experiments are presented.
First, it is proved that for every HCNN model there ex-
ist an equivalent LPNN model. Second, it is shown that
the set of input-output functions of an LPNN model is
strictly larger than the set of functions of an equivalent
HCNN model. Therefore, when using equal architecture
of the canonical building blocks (MLPs) for the LPNN
and HCNN models, the LPNN represent a superset of
the approximation capabilities of the HCNN models.

1 INTRODUCTION

Predictive neural networks [1, 5, 2] represent non-linear
dynamical system models generalized to the segment
framework [3]. Their performance in automatic speech
recognition was found to be inferior to that of the
advanced HMMs, mainly due to problems with iden-
tity mappings in modeling intrasegmental dependencies
[6, 4]. It is belived, however, that their strenghts as
non-linear models could still be exploited in modeling
dependencies across phones, e.g. diphones, where linear
models prove inadequate. Therefore, studies of approx-
imation capabilities of nonlinear models are important
given their potential use in modeling the coarticulation
e�ect across phones.

2 COMPARING LPNN WITH HCNN

This section gives a theoretical comparison between the
LPNN and HCNN models [5, 2]. Following formal def-
initions of the models, their approximation capabilities
are compared and discussed.

2.1 Model De�nitions

Following [5], the LPNN model is de�ned as a sequence
of S distinct MLPs, where each network is associated
with particular state c; 1 � c � S. 1 Approximation

1For sake of notational convenience assume one output unit,

No = 1.

capabilities of the LPNN model can be described as

FLPNN = LPNN (S;w1; v1; �1; � � � ;wS ; vS ; �S)

=
�
(f1; � � � ; fS); fc : R

Ni ! R
	

(1)
where wi denote weights from the input to hidden units,
vi weights from the hidden to output units, �i bias
weights and

fc(x) =

NhX
j=1

vcj�(w
T
c x+ �cj) (2)

represents a mapping function of a canonical MLP with
Ni input, Nh hidden units that have sigmoidal activa-
tion function �.
Note that for each state c there is a separate network

which realizes the set of functions FNh
Ni

(�) given by

FNh
Ni

(�) =

8<
:f : RNi ! R j f(x) =

NhX
j=1

vj�(w
T x+ �j)

9=
;
(3)

where � is the activation function of the hidden units
and T denotes a transpose. Therefore, given S states,
the LPNN model realizes an S-tuple of functions with
S independent parameter sets

fwi; vi; �i; 1 � i � Sg (4)

The independence of parameter sets means that no
LPNN parameters need to be shared, i.e., need to be set
equal, in any of two states of the model.
An HCNN model de�nition [2] is given in Figure 1.

By rewriting the Equation 3 for the HCNN model, we
get

FHCNN = HCNN (Nc;w; v; �; !)
=

�
(f1; � � � ; fNc); fc : R

Ni ! R
	 (5)

where

fc(x) =

NhX
j=1

vj�(w
Tx+ !T c+ �j) : (6)
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Figure 1: An HCNN model.

where ! denotes the weights from hidden control inputs
to the �rst hidden layer and c the hidden control input
vector. Note that the values of c are restricted to be of
\thermomether" type, i.e.,

ci =

Ncz }| {
1111|{z}
c

00000 (7)

This means that given any state c, 1 � c � Nc, the �rst
c consecutive inputs are set to 1:0 whereas the remaining
Nc � c inputs are set to zero.
In contrast to the LPNN model, the HCNN model

consists of a single MLP. This means that the model
parameters w; v; � are shared among all states. To en-
able better modeling of sequence of states, an additional
hidden control input (HCI) modulates the function fc
for states c; 1 � c � S, where Nc = S.

An equivalent view of the HCNN model is given in
Figure 2.
When considering activation levels of the HCI inputs

(i.e., thermometer representation), we may group the
connections from the HCI to the hidden layer as addi-
tional bias weights, i.e.,

�(c) = � +

cX
i=1

!i (8)

where � denotes bias weights, and !i weights from the
HCI to hidden units for a particular state c.

2.2 From HCNN to LPNN model

Considering de�nitions of the LPNN and HCNN models,
the following theorem can be proved.
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Figure 2: An alternative view of the HCNN model.

Theorem 1 For any HCNN model there exists an

equivalent LPNN model.

Proof: Consider an HCNN model with Nx input
units, Nc hidden control inputs, Nh hidden units on
the �rst hidden layer, and No output units. Let the
set of HCNN parameters (i.e., weights) be denoted by
w0, for weights from input x to the �rst hidden layer,
!, for weights from HCI to the �rst hidden layer, v0,
for weights from �rst hidden layer to the outputs, and
�0, for bias weights. Then an equivalent LPNN model
has Nx input units, Nh hidden units on the �rst hid-
den layer, and No output units. Let wi; 1 � i � Nc

denote weights of the LPNN's i-th MLP, connecting in-
put x to the �rst hidden layer, vi; 1 � i � Nc denote
connections from �rst hidden layer to output units, and
�i; 1 � i � Nc denote bias weights.

According to Equation 8 (Figure 2), the parameters
of an equivalent LPNN model are de�ned by

S = Nc

wi = w0; 1 � i � Nc

vi = v0; 1 � i � Nc

�i = �0 +

cX
i=1

!i

(9)

The Equations 9 impose

HCNN (Nc;w; v; �; !) =
LPNN (Nc;w; v; � + !1;

w; v; � + !1 + !2;
� � � ;

w; v; � +
PNc

j=1 !j)

(10)



thereby
FLPNN = FHCNN (11)

as de�ned by Equations 1 and 5.

2

2.3 From LPNN to HCNN model

The following proposition describes a transition from an
LPNN to the HCNN model.

Proposition 2 The set of functions of an LPNN model

FLPNN = LPNN (S;w1; v1; �1; � � � ;wS; vS; �S)

=

(
(f1; � � � ; fS); fc : R

Ni ! R j fc(x) =

NhX
j=1

vcj�(w
T
c x+ �cj)

)

is strictly larger than the set of functions

FHCNN = HCNN (Nc;w; v; �;!)

=

(
(f1; � � � ; fNc ); fc : R

Ni ! R j fc(x) =

NhX
j=1

vj�(w
T
x+ !

T
c+ �j)

)

of an equivalent HCNN model.

Proof: Consider a simple LPNN model with Ni =
Nh = 1; S = 2 that realizes the functions of the form (a
superscript denotes the state c; 1 � c � S, ie, the LPNN
network index)

�(�12 ; v
1
1 ;�(�

1
1 ; w

1
1 ;x))

�(�22 ; v
2
1 ;�(�

2
1 ; w

2
1 ;x))

(12)

whereas an equivalent HCNN model realizes

�(�02 ; v
0
1 ;�(�

0
1 + !1; w

0
1 ;x))

�(�02 ; v
0
1 ;�(�

0
1 + !1 + !2; w

0
1 ;x))

(13)

Since the weights w0
1 ; v

0
1 ; �

0
i are shared (i.e., have to

be equal) for di�erent states c whereas LPNN model
weights wc

1; v
c
1; �

c
i ; c = 1; 2 are not, the set of LPNN func-

tions is strictly larger than that of the HCNN model.

2

To illustrate the results discussed above with mod-
els having two-dimensional inputs, consider an HCNN
model with two inputs as depicted in Figure 3.
According to Equation 8, the HCI weights can be seen

as changing the value of the bias weight on the �rst hid-
den layer, �01(c) (Figure 3). The e�ects of this change
on the function f0(x1; x2; c) for three discrete values of
�01(1) = �10; �01(2) = 0; �01(3) = 10 are shown in Fig-
ure 4. The values of other weights of the model have
been set to w0

1 = 5; w0
2 = �5; �02 = 2; v01 = �10. Fig-

ure 3 clearly shows that changing the weight �01(c), that
is, switching the state of the HCNN model, has a lim-

ited inuence on the function of the model, f0(x1; x2; c).
Roughly speaking, switching the state in the HCNN
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Figure 3: From two input LPNN to equivalent HCNN
model (see text).
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Figure 4: Input-output functions of the HCNN with two
inputs for three discrete values of �01(c).

model results in a shifted version of its function of the
previous state.

Consider now an LPNN model realizing the functions
shown in Figure 5. The weight values of the LPNN
model have been set to �11 = �1; w1

1 = �6; w1
2 =

5; �12 = 2; v11 = �1 for the �rst MLP, �21 = 5; w2
1 =

�5; w2
2 = �6; �22 = 2; v21 = �10 for the second MLP, and

�31 = �10; w3
1 = �5; w3

2 = �3; �32 = �6; v31 = �10 for the
last MLP. Clearly the HCNN model cannot uniquely re-
place the LPNN model because changing the state in the
HCNN model results in a shifted version of its function
(Figures 6 to 8).

Figure 6 (left) shows the functions of the HCNN
model with weight values set to �01 = �1; w0

1 =
�6; w0

2 = 5; �02 = 2; v01 = �1. Clearly, equality of
the LPNN (state1) and HCNN (state1) weights implies
f1(x1; x2) = f0(x1; x2; 1); 8x, i.e., identical functions
of both models. But switching the state in the HCNN
model with �01 = 10 produces only the shifted version of
the f0(x1; x2; 1) (Figure 6, center). Similar result with
�01 = �10 is shown in the Figure 6 (right).

Figure 7 (left) shows the functions of the HCNN
model with weight vector of �01 = 5; w0

1 = �5; w0
2 =

�6; �02 = 2; v01 = �10. The equality of the
LPNN (state2) and HCNN (state2) weights implies
f2(x1; x2) = f0(x1; x2; 2); 8x, i.e., identical functions
of both models. But switching the state in the HCNN
model with �01 = 20 produces only the shifted version
of f0(x1; x2; 2) (Figure 7, center). Similar result with
�01 = �20 is shown in the Figure 7 (right).

Finally, Figure 8 (left) shows the functions of the
HCNN model with weight values set to �01 = �10; w0

1 =
�5; w0

2 = �3; �02 = �6; v01 = 10. Again the equality of
the LPNN (state3) and HCNN (state3) weights implies
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Figure 5: Input-output functions of a three state LPNN
model with two dimensional inputs.
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Figure 6: Approximating the �rst state function of the
LPNN model with an HCNN model.
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Figure 7: Approximating the second state function of
the LPNN model with an HCNN model.
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Figure 8: Approximating the third state function of the
LPNN model with an HCNN model.

f3(x1; x2) = f0(x1; x2; 3); 8x, i.e., identical functions.
But switching the state in the HCNN model with �01 = 5
produces only the shifted version of the f0(x1; x2; 3)
(Figure 8, center). Similar result with �01 = 20 is shown
in the Figure 8 (right).

3 CONCLUSIONS

The paper has considered the equivalence of input-
output mapping functions between the Linked Predic-
tive Neural Networks (LPNN, [5]) and the Hidden Con-
trol Neural Networks (HCNN, [2]).

It is proved that for every HCNN model there exist
an equivalent LPNN model. In other words, for ev-
ery HCNN there exist an equivalent LPNN with exactly
the same input-output mapping functions (FLPNN =
FHCNN , as de�ned by Equations 1 and 5).

It is also shown and supported by the Mathematica

experiments that the set of input-output functions of an
LPNN model is strictly larger than the set of functions
of an equivalent HCNN model. Despite the simplicity of
analyzed models the Figures 4 to 8 give an insight into

the role of each of the model parameters on the map-
ping function. Speci�cally, given the fact that the state
change in the HCNN model is equivalent to a modula-
tion of the weight value �(c) (Equation 8), it is clear
that the set of functions of the LPNN model FLPNN is
strictly larger than the set of functions of the equivalent
HCNN model FHCNN .
In other words, the LPNN model can realize map-

pings which the equivalent HCNN model cannot, given
the same structure of the multi-layer perceptron as a
canonical building block (ie, the number of input, hid-
den, output units; the number of weights).
An interesting further research avenue might be to

compare the mapping functions (FLPNN and FHCNN )
that the learning algorithms actually yield on the same
real-world task.
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