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ABSTRACT

In the framework of speech enhancement we propose
a new approach for signal recovering in colored noise
based on adaptive Kalman �lter. The approaches pro-
posed in the past, in this context, operate in two steps:
they �rst estimate the noises variances and the param-
eters of the signal and noise models and secondly es-
timate the speech signal. In this paper we propose a
new parameters estimation method based on the EM
(Expectation-Maximisation) algorithm.

1 INTRODUCTION

The problem we are dealing with is to restore a speech
signal corrupted by a noise when only one noisy observa-
tion is available. Many approaches based on the Kalman
�lter [1-5] for speech enhancement have been reported
in the literature.

In [1][2][3] and [5] the noise under a simpli�ed assump-
tion is considered as an white Gaussian process. But in
[4] the noise is considered colored and modelled as an
AR process.

In [1] a time-adaptive algorithm is used to adaptively
estimate the speech model parameters and the noise
variance. The estimation method of the speech model
parameters used in [4] is a suboptimal solution of the
maximum likelihood argument.

In this paper we propose a new approach in the
case of a speech signal corrupted by an additive col-
ored noise. Signal and noise are modelled as AR pro-
cesses. The coe�cients of the AR processes and the AR
driving processes variances are estimated based on EM
(Expectation-Maximisation) algorithm. We extend for
the colored noise the method proposed by Deriche [6] to
estimate the AR parameters of the signal corrupted by
white noise.

This paper is organised as follows. We present in sec-
tion 2 the speech enhancement approach based on the
Kalman �lter algorithm. The section 3 is concerned
with the presentation of the estimation parameter tech-
niques. In section 4 we provide experimental results and
evaluate the performance of the proposed approach.

2 SPEECH ENHANCEMENT BASED ON

THE KALMAN FILTERING

Let us consider an observed signal z(n) = s(n) + b(n)
where the speech signal s(n) and the noise b(n) are mod-
elled respectively as a p and q order AR processes gener-
ated respectively by u(n) and b(n), uncorrelated Gaus-
sian zero mean white noises with variances �2

u
and �2

v
.

This system can be represented by the following state-
space model[4]:

x(n+ 1) = �x(n) + �w(n + 1) (1)

z(n) = s(n) + b(n) = Hx(n) (2)

where

x(n) = [s(n � p+ 1); � � � ; s(n); b(n� q + 1); � � � ; b(n)]T

(3)

is the state-vector and

w(n) = [u(n) v(n)]T (4)

� =

�
�s 0
0 �b

�
(5)

is the state-transition matrix. It is an extended ma-
trix containing two submatrices �s and �b related to the
model's parameter of the signal and the noise as follow:

�s =

2
6664

0 1 � � � 0
...

...
. . .

...
0 0 � � � 1
ap ap�1 � � � a1

3
7775 (6)

�b =

2
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0 1 � � � 0
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. . .

...
0 0 � � � 1
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3
7775 (7)



� andH are the input and the output matrices de�ned
by :

� =

�
0 � � � 1
0 � � � 0

0 � � � 0
0 � � � 1

�
(8)

H =
�
0 0 � � � 1 0 0 � � � 1

�
(9)

The standard Kalman �lter provides the following up-
dating state-vector estimation [7]:

bx(n+ 1=n) = �bx(n=n� 1) + �K(n)e(n)
(10)

e(n) = z(n)�Hbx(n=n� 1) (11)

where e(n) is the innovation sequence and K(n) the
Kalman gain.
� and K(n) are unknown and hence will be respec-

tively estimated by b� and bK(n).
Then, the updating state vector estimation becomes:

bx(n+ 1=n) = b�bx(n=n� 1) + b� bK(n)e(n)
(12)

The estimated speech signal is a p component of the
state-space vector :

bx(n=n) = b�bx(n=n� 1) (13)

In the Kalman �lter literature the case where z(n) =
H(n)x(n) is called "noise free observation"[7]. In this
case the application of the standard Kalman falls into
a singular problem. Among the solutions proposed to
overcome such a singularity we retain the coordinate
transformation suggested in Maybeck [8].

3 PARAMETER ESTIMATION

Let use denote by sN (n), bN (n) and zN (n) the Nx1 vec-
tors made of the samples of s(n), b(n) and z(n). We will
consider that s(n) and b(n) are statisticaly independent.
The "Expectation" step at iteration m consists of

computing the following functions:

Qs = E[ log
�
p
�
sN (n); ai; �

2
u

�	
=zN (n); a

(m)

i
; �2(m)

u ; c
(m)

j
; �2(m)

v ] (14)

Qb = E[ log
�
p(bN (n); ci; �

2
v
)
	

=zN (n); a
(m)

i
; �2(m)

u ; c
(m)

j
; �2(m)

v ] (15)

Next Qs and Qb

are maximized with respect to ai; �u; cj; �v to yield a

new estimate a
(m+1)

i
; �

2(m+1)
u ; c

(m+1)

j
; �

2(m+1)
v . This is

the "Maximization" step.
The density functions of sN (n) and bN (n) are given

by :

p
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2
u
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The conditional means and co-
variances of sN (n)=zN (n) and bN (n)=zN (n) are given
by :

�s=z(ai; �
2
u
; cj; �

2
v
) = Rs(ai; �

2
u
)�

Rs(ai; �
2
u
) +Rb(cj; �

2
v
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zN (n) (18)
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Using (16) - (21) we can rewrite Qs and Qb by ne-
glecting the constants:
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where:

G
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4 SIMULATIONS AND RESULTS

The method has been exercised to natural speech signal
corrupted by a noise captured in a car (database of the
Matra Company). The order p of the AR process of
speech signal has been �xed to 10.

An example of speech enhancement results, using this
algorithm, is reported in the Table 2. A SNR improve-
ment from 1.45dB to 8.01dB has been obtained when
p = 10 and q = 10 (case 1) for an input SNR varying
from -10 to 10dB. If we consider the car noise as an white
process (case 2) the SNR improvement decreases from
0.83 to 2.14dB (depending on SNR of the input) com-
paratively with the case where the noise is considered
colored.

Input SNR(dB)
SNR improvement (dB)
case 1 case 2

-10 8.01 5.87

-5 5.89 4.08

0 4.06 3.19

5 2.60 1.53

10 1.53 0.63

Table 1: Output SNR improvement for di�erent input
SNR

Figures 1, 2 and 3 represent respectively the noisy
speech, the enhanced speech signal and the original
speech signal with theirs spectrograms. For this exam-
ple, p = 10, q = 10 and the SNR of the noisy speech
signal is 0dB.

Figure 1: Noisy speech signal

Figure 2: Enhanced speech signal

Figure 3: Original speech signal
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