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ABSTRACT

In this paper, we introduce a nonlinear decision feed-
back equalizer (DFE) structure which decomposes the
nonlinear equalization problem into feedback and feed-
forward parts, thus allows flexibility in the choice of suit-
able structures for a given problem and improves on the
performance of the conventional DFE and the nonlin-
ear equalizer proposed in [1]. We show that the given
general structure for this DFE can be represented by a
recurrent canonical piecewise linear (RCPL) network [2]
and that it satisfies the dynamic properties given in [3].

1 INTRODUCTION

Neural networks are good candidates for nonlinear sig-
nal processing tasks in communications due to their non-
linear computation capability, ability to learn from data,
and potential for easy hardware implementation. In this
paper we introduce a nonlinear DFE which utilizes a
neural network structure to overcome the effects of non-
linearities in the channel.

Conventional adaptive equalizers such as linear equal-
izers and DFE use linear finite impulse response (FIR)
filters. Linear filters perform poorly when there is non-
linearity in the channel. Although noncausal character-
istic of DFE improves its performance over linear equal-
izers, both structures assume a linear channel model.

In [1], a multilayer perceptron based DFE is proposed
which uses nonlinear FIR filters for the equalization of
nonlinear channels. It is shown that the performance of
the equalizer is improved with this equalizer structure
compared to the equalizers using linear FIR filters.

In this paper, we propose a nonlinear DFE which uses
a RCPL network at the feedforward and feedback part
of a conventional DFE. RCPL network partitions the in-
put signal space into finite disjoint regions and in each
region, it can be represented by a FIR filter with infi-
nite length. Thus it can approximate a large class of
nonlinear functions when used as an equalizer.

The paper is organized as follows. In Section 2, we
describe the structure of conventional DFE and the pro-
posed nonlinear DFE. In Section 3, we give the defini-
tion of RCPL network and show that nonlinear DFE

adaliQengr.umbc.edu

can be represented by a RCPL network and it satisfies
its dynamic properties. Finally in section 4, we give the
simulation results.

2 NONLINEAR DFE STRUCTURE

The structure of a conventional DFE is shown in Fig
1. The decision function is dependent on channel obser-
vations y and the previous decisions X. In conventional
DFE, decision function is made up of linear combination
of y and . The advantage of conventional DFE over lin-
ear equalizers is the separation of the observation space
into subset of observation centers for a particular deci-
sion for which the separation is achieved by the use of
previous decisions % [4]. Linear combination is not a
good choice if there is nonlinearity in the channel. It is
shown in [1] and [4]-[6] that the performance of a con-
ventional DFE can be improved on by using nonlinear
structures in the decision function.
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Figure 1: Decision Feedback Equalizer Structure

In this paper, we break the equalization problem into
two parts, as does the conventional DFE, and introduce
a general nonlinear decision function. The decision func-
tion with both the feedback and feedforward parts using



recurrent nonlinear networks is shown in Figure 2. It
is similar to the MLP structure proposed in [1] except
that channel observations and the previous decisions are
separately processed and there is full recurrency in the
hidden nodes. It is observed that by breaking the prob-
lem into two parts, this structure resultes in improved
error rates compared to the conventional MLP based
DFE [1].
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Figure 3: Sigmoidal and Piecewise Linear Activation
Function g(-)

3 RCPL Network

For the structure shown in Figure 2, we can replace the
sigmoidal nonlinearity with a piecewise linear function
as shown in Figure 3 and develop a RCPL formulation
for the given DFE. RCPL allows for easy implementa-
tion because of its piecewise linear nature and savings.
in the number of total parameters required for repre-
sentation because of its canonical structure, i.e., its effi-
cient global representation capability [2]. We can show
that the network structure with piecewise linear acti-
vation function is a recurrent canonical piecewise-linear

(RCPL) network [3]. The recurrent canonical piecewise-
linear function is defined as:

Definition 1.(Recurrent Canonical Piecewise-Linear
Function): A function f: D — @Q with sample space
D c RN and compact subset Q@ C RM is said to be
a RCPL function if it can be expressed by the global
representation:

f(x(n)) = a4+ Box(n)+B1f(x(n—1)) (1)
+ Z ¢i [{eo,, x(n)) + (@, f(x(n = 1))} + B

where x € RN, a, a;, € RM, ¢; € RM, ap, € RV.
Bg € RMxN . B, € RMxM and 7,8; € R. The ele-
ments in the vector x(n) are predicted by the following
NARMA model:

zi(n) = hi(x(n—1),---,x(n — p1),
f(x(n —-1)),---, f(x(n — p2)) (2)

A RCPL representation which is applicable to the gen-

eral nonlinear DFE structure given in this paper can be
obtained as follows: Let p; = 1, pp = P, x(n) is the
state vector of the dynamic system and u(n) is the in-
put vector of the system. The RCPL function is then
defined as:
Definition 2 (Recurrent Canonical Piecewise-Linear
Network): A function f: Dy x Dy — @ with sample
space D; C RN, D, C R", and compact subset Q C RM
is said to be a RCPL function if it can be expressed by
the global representation:

f(x(n),u(n)) = a+ Box(n) + B f(x(n — 1), u(n - 1))

+Bou(n) (3)

zk(n) = ag+(ho,, x(n — 1))+(hy,, f(x(n - 1),u(n ~ 1))

+(ha,, u(n)) + Y il (@0, x(n = 1)) + (e, u(n))

i=1

P
+Z (-yj',f(x(n =i u(n—-35)) + 8 (4)

j=1

where x,ho,, @0, € RM, fahy,v; € RM,
w,h,y,, a1, € R", Bg € RM*N B, € RM*XM B, ¢
RMXT “ay ck.,Br,, T € R, k=1,2,---,N and zi is the
kth element in x.

Based on the above definition we can express the new
DFE structure as an RCPL network as follows: Let M =
1, N= M; + My, r = Ny,

u(n) = y(ﬂ) = [yl(n)y YN, (n)]

x(n) = s(n) = [s](n), -, Sy, s1(n), -+, 83y, ()]

o(n) = f(s(n),y(n))



where y(n) is the input vector and 6(n) is the output of
the network and s7(n), s{(n) are the outputs of hidden
nodes.

For the parameters in (3), let

a=0, BO:[q‘f(n), T ’qiffzqull(n)" : '7Q%/I,(n)]
B,=0, B,=0
and the parameters in (4), we choose
ar = 0, hok:(), hlk:O, hgkIO
r=2M,, c¢,=1/8, [i=4, i=1,---, My
ck,:_1/83 /Bi:_41 l:M2+17 T 2M2
ay, =(vgy, - viy,), @, =0
7j;k:(“’f1r T ngz)T7 i:l,-'~, 2M, k:1,~", M,
for states [s{(n), - -, s3s,], and
ar = 0, h()k = 0, h]k = 0, hzk =0
T=2M;, cx=1/8, p[Bi=4 i=1,---, M,
ck.:_1/81 133:_41 Z:M1+17 Y 2M1
allk:(vzl’. o U%Ml)T s aztk :(wzl’wz2’ Y szl )T
7]'”‘ :07 izla”'a 2]\41 kzla"') Ml
for states [s{(n),---, s} ]

The RCPL structure is then expressed by the following
equations:

M, M,
(n) = gfsi(m)+y_a!si(n) (5)
i=1 i=1

si(n) = g(8%(n)) and si(n) = g(5(n))
M, N

gz(n) :Zv;isz(n_l)+zwziii(n)) k= 1"",M2
i i=1

(6)
M, Ny

§i(n):szis%(n—l)%—Zw%iw(n), k=1,---,M;
i i=1

(7)

The network defined by (5)-(7) is shown in Figure 2.
Note that the output of the network is fed to a slicer to
find #(n — d), and then fedback into the network. This
modification introduced into the structure is observed
to improve the performance of the DFE.

3.1 Dynamics of RCPL

To study the dynamics of the RCPL function described
by (3) and (4), we first rewrite the function in the fol-
lowing form:

x(n) = a+Bix(n-1)+Byu(n) (8)

e

+ ¢i| {@oi, x(n — 1)) + (a3, u(n))

i=1

P
+ Y (3, %(n =) + 5l

.
—_

where
_ _ x(n) _ a _ c;
x(n) = [ f(x(n),u(n)) ]a_ [ a+ Boa ] ¢ = [ Boc; ]
= H H _ H
Bl = [ BOI(')IO B1 + l;()Hl ] B2 = |: B:, + ];OHQ ]

&o, = (@0,,0)T, &1, = ax,, 7, = (0,7;,)", Bi = i
a:(al,az,-..,aN)T’ ci:(cl,,c2l," )T

Hj :(hjl,---,th)T,i:1,2-~,r ,j:0,1,2

5 CN;

Then by using the definition given above, we can show
that the RCPL function is bounded for bounded inputs.

Theorem 1: For the RCPL function defined by (3)
and (4), assume that the input vector u(n) is bounded

and the parameters satisfy the following condition: If

there exists an o € (0, 1) such that

T P :
I|B1II+Z|IEiII(llao.+Z‘7j,»||)S l-g  (9)

then, there is a real number d, such that for all K > d,
the ball D(K) = {x: ||x|| < K} is invariant under (3)
and (4).

Proof of the theorem is given in [3]. Note that the
structure used here is a more general form. The proof
of the theorem however, follows the same procedure with
this new definition. The definition given in (8) provides
a convenient framework to study dynamics of RCPL
function which we also use to prove the following:

Theorem 2: The map that defines the RCPL func-
tion (3) and (4) is a contractive mapping if the condition
given in (9) is satisfied.

Proof: Let
k(x) =

P
+ Z(—‘yj,,,i(n—m + G

then,

k( x1) - k( x2) =B (X1 — X2)

T P
+ 20 & (G0, %) + (@, u(m) + 3 (35, %un =) + B

j=1

P
—|{ao,, X2) + (@1,,u(n)) + Z <‘7j,,5<2(n —j)> +Bil) (11)

j=1

and by using (9), and defining d; = ao, + Ele v;, we
get

le(x1) = k(x2)l| < (lIBull+ D el Idil]) [1xy — %ol

i=1

- /1 - Mo - |l



where ¢ € (0,1).

Theorem 2 shows that k(-) is a contractive mapping
whenever (9) is satisfied. Thus, after receiving input
vector u(n), which is assumed to be bounded, the func-
tion will always reach a unique equilibrium regardless of
its initial state xo.

4 Simulation Results

As an example, consider a channel with transfer func-
tion H(z)=1 + 0.5z7! + 0.2z72 The output of the
channel is passed through a memoryless nonlinearity
f(-) = (-)=0.03(-)* and then corrupted by additive white
Gaussian noise. The input to the channel is drawn from
a 4-level alphabet {-3,-1,1,3} for which each symbol is
equally probable. The number of channel observations
N is selected as 12, and the number of previous de-
cisions Ns, used in the decision function is selected as
4. The number of hidden nodes for the channel obser-
vations M; and previous decisions M are selected as
11. The network is trained based on minimum mean
square error criteria. 1000 training samples are used
and the learning parameter 7 is chosen as 0.01 for mod-
ified DFE, MLP-DFE and 0.001 for conventional DFE.
Several learning parameters are tried and the ones that
yield best performance are used in the simulation. 10
independent realizations are performed for which the
system is tested for a total of 2 x 10° samples.

Figure 4: Symbol Error Rates for (a) sigmoidal (b)
piecewise linear activation function by using the modi-

fied DFE, (c) MLP-DFE (d) DFE

From the figure we see that symbol error rates for
the modified DFE is better than MLP-DFE and con-
ventional one. We also note that using sigmoidal or
piecewise linear activation function result in similar per-
formance.

In this paper, we introduced a nonlinear DFE which
uses a neural network structure in the decision function.
We showed that the structure can be represented as a
RCPL network if we use a piecewise linear activation
function in the hidden nodes. We discussed the dynamic
properties of a RCPL network and observed that the
proposed nonlinear DFE structure exhibits similar per-

formance for both activation functions. The piecewise
linear equalizer, on the other hand, provides access to a
variety of analysis and development tools that are linear
and allows development of efficient learning algorithms
while effectively approximating functions that are highly
nonlinear. We compared our structure with MLP-DFE
and conventional DFE and gave our simulation results.
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