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ABSTRACT

The computation of the Nth root produces a compres-
sion of the spectrum for some types of analytic signals.
Once the spectrum has been shrinked in the frequency
domain, the signal can be decimated in the time domain,
leading to compression. The Nth root calculation raises
some problems which are discussed, like phase jumps
related with zero crossings of the amplitude. Results
of simulations with sinusoids and speech signals are re-
ported. More work is needed to make the approach prac-
tical.

1 INTRODUCTION

Many existing techniques for the compression of sig-
nal are hased ou linear operations. like linear predic-
tion or the Discrete Cosine Transform (DCT). These
techniques have led to significant advances, but, also,
they have shown their limitations. Now. to achieve fur-
ther progress, it is necessary to consider non-linear ap-
proaches.

The present paper is an attempt in that direction
and its aim is to draw the attention on a non-linear
method which was considered more than three decades
ago for the compression of speech with analog means
(1, 2]. It performed a frequency compression by a fac-
tor N through the computation of the Nth root of the
analytic signal and was successfully demonstrated in
telephone transmission experiments. However, at that
time, digital techniques were arriving and the analog
compression method was abandoned. Now, in view of
the progress in signal processing and, particularly, mul-
tirate techniques, it might be worthwhile to reconsider
the frequency compression scheme and its implementa-
tion with digital means, and assess its potential, as well
as its inherent difficulties.

The paper is organized as follows. The principle of
frequency compression is presented in the next section.
An implementation scheme is described in section 3 and
the operations are discussed. Section 4 gives simulation
results obtained with a sum of sinusoids and a speech se-
quence as input signals. The merits of the approach are
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discussed in the last section. as well as possible tracks
for future work.

2 FREQUENCY COMPRESSION

Let us consider the following analytic signal

z(t) = a(t)e??® (1)

where a(t) is the amplitude and ¢(t) is the phase.
In its spectrum, the signal has no component in the
negative frequency domain {3].

The following Nth root

Z¥(t) = a¥ ()l F 2)

is a signal whose instantaneous frequency, namely
d¢/dt, has been divided by N. In general, the instan-
taneous frequency is different from the signal spectrum.
However, for some signals it can be equal or closely re-
lated to the spectrum. In those cases and in a digital
context, one can figure out that the sampling rate can
be reduced by the factor N. which leads to bit rate re-
duction and signal compression.

Obviously, the concept is fully valid for a single sinu-
soid. Assuming z(t) = e’“!, the following Nth root

T (t) = I¥ )

has the frequency w/N. However, if the signal is sam-
pled, the roots of the sequence x(n) have to be com-
puted and there are N determinations for the phase at
each time n. The determination to choose at a given
time n is the one which leads to the smallest variations,
because the difference in phase between two consecutive
samples must be w/N.

For more complicated signals, the selection of the de-
sired determination for the phase is more difficult for
two reasons : the amplitude may become zero and the
instantaneous frequency may become negative. For ex-
ample, the amplitude of the signal
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crosses the zero axis. which results in discontinuities
of the phase. Now. the amplitude of the signal

rin) = @ 4 ae g < 1 (5)

is always greater than 1- a, while the instantaneous
frequency can be negative, as shown in F igure 1.

Clearly. for an arbitrary analytic signal x(n), it is nec-
essary to detect any zero crossing of the amplitude and
add £ to the phase of the Nth root.

The detection of zero crossings is a classical technique,
which finds applications in spectral estimation for exam-
ple [4, 5]. It can be performed by more or less compli-
cated algorithms. Here, just elementary approaches are
considered.

Zero crossings of the amplitude can be detected from
the analysis of the amplitude sequence itself and its
derivatives or from the resulting jumps in the phase.
Both approaches are considered below.

As concerns the analysis of the amplitude sequence
a(n), it is preferable to consider the root u(n) = a#(n)
because it has more contrast in its values. Now, the
peak of the second order derivative of the sequence u(n)
provides the desired information. It is given by the clas-
sical raised cosine digital filter :

y(n) =u(n) - 2u(n - 1) + u(n —2) (6)

Various tricks can be employed to make the approach
robust. particularly the introduction of a threshold.
Here, the threshold is set to zero and negative values
of y(n) are discarded : then, the changes of sign of the
derivative of y(u1) are detected. The method works well
with many signals. but it is not completely fault-proof.

The raised cosine digital filter can be applied to the
phase o(n) of the analytic signal x(n), producing a se-
quence ¢(n). However. in that case, the phase has to be
unwrapped. in order to avoid the occurrence of jumps
of 27, and make sure that only the relevant jumps are
detected from the signal e(n). Again, a threshold is in-
troduced in the procedure to get rid of small and mean-
ingless values of ¢(n). The control signal z(n) is a square
signal whose edges coincide with the changes from plus
sign to minus sign in e(n).

Both approaches have been tested on the two cisoid
signal. It has been found that the method based on the
phase jumps is more accurate.

3 COMPRESSION SCHEME

Starting from a real signal with sampling frequency f,,
the compression scheme is shown in Figure 2. The real
input signal z, (1) is fed to an IQ filter which produces
the complex signal x(2n) at half the initial sampling
rate. Then. the Nth root is calculated and a low-pass
decimation filter produces the compressed sequence at
the rate ,f—N Using the phase jumps to detect the zeros
of the signal modulus, the operations involved in the
computation of the Nth root are organized as follows.
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The restitution of the initial signal consists of the re-
verse operations, namely interpolation. Nth power com-
putation and complex-to-real conversion.

The specification of the complex decimation filter is a
delicate operation. After the Nth root calculation, the
signal spectrum is expected to be in the frequency band
[0, gﬁ] Therefore, the filter can be computed as a real
low-pass filter with cut-off frequency 4f—;\,, its coefficients
being afterwards multiplied by

€77 i (7)

to produce a shift of 4LN on the frequency axis. The
stop band attenuation to be imposed depends on the
signal power remaining above the frequency 3% which
is susceptible to be aliased in the useful band.



4 SIMULATION RESULTS

In the simulations, the sampling frequency is 8000 Hz
and a signal consisting of two sinewaves with frequencies
500 Hz and 800 Hz is considered first. The spectrum
after the square root calculation is shown in Figure 3.
After decimation with the factor 2. interpolation and
square calculation, the spectrum of the reconstructed
signal is shown in Figure 4.

The same scheme has been applied to the speech se-
quence shown in Figure 5. Most of the spectral energy
of the analytic signal is situated below 600 Hz, as shown
in Figure 6. After square root calculation. most of the
energy is situated below 300 Hz as shown in F igure 7.
The reconstructed signal is shown in F igure 8. It ap-
pears clearly that the voiced sections of the sequence
are adequately reconstructed, while the non-voiced sec-
tions are highly distorted.

5 CONCLUSION

A non linear method has been presented o process and
compress signals. In its principle, it is perfectly adapted
to a single sinusoid in a spectrum. With multiple sinu-
soids, the Nth root calculation raises the problem of the
zero crossings of the signal amplitude and the resulting
Jjumps in the phase. which have to be taken into account.
An accurate and reliable zero crossing detection method
is essential and two simple approaches have been sug-
gested.

The application to a speech sequence shows that, in
the compression-reconstruction process. the voiced sec-
tions of the speech are reasonably well treated, while the
non-voiced sections are severely distorted.

To make the proposed scheme practical more work is
needed. on both theoretical aspects and implementation.
The effect of Nth root calculation on the complex sig-
nal spectrum must be investigated further. at least for a
number of typical families of signal. as well as the design
of the decimation and interpolation filters. The effects
of finite precision arithmetic and quantization after fre-
quency compression must also be studied in details.

Depending on the results of this efforts. the Nth root
technique might find application in the compression of
some types of signals or in other areas like demodulation
Or carrier recovery in transmission or in instrumentation
and measurement.
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Figure 1. Analytic signal in the complex plane
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Figure 2: Compression scheme
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Figure 3: Spectrum of square root signal . ) )
Figure 6: Spectrum of the complex signal
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Figure 4: Spectrum of reconstructed signal

Figure 7: Spectrum of the square root signal
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Figure 5:  Original speech in the time domain Figure 8: Reconstructed speech



