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ABSTRACT

In this paper, we revisit a number of concepts which
have recently proven to be useful in multiscale signal
analysis, speci�cally by replacing the now classical lin-
ear scale transition operators by nonlinear ones. Con-
nections between nonlinear perfect reconstruction �lter
banks and PDE operators used in scale-space theory
are established. An application of the proposed nonlin-
ear tools is then given for extracting a signal embedded
in noise. We also develop the important case of time
invariant nonlinear representations.

1 Introduction

There has recently been an increasing interest in non-
linear multiscale analysis of signals and images [1], [2].
This is to a large extent due to the interest in preserv-
ing important sharp features such as transitions/edges
present in a signal.
One possible approach consists of �nding nonlinear ex-
tensions of linear subband decompositions [2]. These
nonlinear structures are based on a nonlinear scale tran-
sition operator operating from �ne to coarse resolution.
The resulting coe�cients are composed of the approx-
imation coe�cients of the signal at a given resolution
level and of the details di�erentiating two consecutive
resolution levels. This methodology is very general as it
allows for a very wide class of linear or nonlinear opera-
tors. Thus far, one has been selecting \good" nonlinear
�lters on the basis of the given problem (lossy or loss-
less image compression, feature sieves, signal enhance-
ment,...), somewhat heuristically. In this work, we will
give some selection guidelines by establishing a connec-
tion between nonlinear �lter banks and nonlinear Partial
Di�erential Equations (PDE's) used in scale-space the-
ory for which feature-driven operators have been well
researched, albeit sometimes heuristic. We further ex-
tend these nonlinear decompositions by endowing them
with a shift-invariance property. Finally, an example il-
lustrating the importance of such nonlinear techniques
in extracting a signal embedded in noise is provided.

�The work of the last author was partially funded by NCSU
School of Engineering and AFOSR Grant F49620-98-1-0190.

The paper is organized as follows: in Section 2 we brie
y
review the basic principles of discrete-time nonlinear
multiresolution decompositions. Section 3 shows some
connections existing between these operators and mul-
tiscale approaches based on PDE's. Then, in Section 4,
we propose some extensions of these nonlinear decompo-
sitions allowing us to obtain a time-invariant denoising
method. Finally, in Section 5, we give some illustrative
simulation results.

2 Background and Notation

It is now well-known [3] that wavelet decompositions
are implemented by cascading two-channel linear �l-
ter banks. If we now try to �nd nonlinear extensions
of these linear scale transition operators, we can use
the structure shown in Fig. 1 where H and G are ar-
bitrary operators and A1 and A2 are one-to-one map-
pings. The decomposition process is initialized by tak-
ing c0(k) = x(k), where x(k) is the signal to be analyzed.
By an appropriate choice of H and G, the coe�cients
cj(k) may be interpreted as the approximation coe�-
cients of the signal at resolution level j and dj(k) corre-
sponds to the details lost when passing from resolution
level j to the next coarser one (j + 1). If the decompo-
sition is iterated up to resolution level jm, it provides
(under some weak conditions [2]) a periodically time-
invariant, critically subsampled decomposition with per-
fect reconstruction. The analysis �lter bank in Fig. 1 is
associated to a dual synthesis �lter bank in a straight-
forward way. When H, G, A1 and A2 are linear oper-
ators, it can be shown that this structure allows us to
generate all possible orthogonal/biorthogonal discrete-
time wavelet decompositions. If we now wish to design
nonlinear decompositions, the only constraint to be sat-
is�ed is the injection of the operators A1 and A2. There-
fore, a great variety of �lters may be envisaged such as
Volterra �lters, morphological or order statistics �lters.
Up to now, there was no guideline of what a \good"
nonlinear �lter should be for a given problem, as for a
given application a choice was made with no particular
feature-driven objective. In the next section, we will lift
this limitation by providing some guidelines which natu-



rally fall out of the established connection between this
nonlinear analysis framework and existing PDE-based
techniques.

3 Connections with PDE's

In scale-space theory, a representation c(t; s) at scale s

of the analyzed continuous-time signal x(t) is de�ned as
the solution of the following PDE:

@c(t; s)

@s
= F [c](t; s) (1)

with the initial condition:

c(t; 0) = x(t) : (2)

Increasing the scale parameter s leads to \simpler"
signal representations. The operator F is a function of
c(t; s) and some of its partial derivatives with respect to
t. If, for instance,

F [c](t; s) =
@2c(t; s)

@t2
(3)

the linear heat di�usion equation is obtained. Its solu-
tion can be shown to amount to convolving c(t; s) with
increasingly broad Gaussian functions (with \variance"
proportional to s) [5]. It is interesting to note that such
an analysis is actually similar to the �rst pyramidal de-
compositions which have been proposed [4] in a discrete-
time framework. To have a non uniform smoothing of
the signal which can take into account its local regu-
larity properties, more sophisticated forms of F must
be chosen. In particular, introducing nonlinearities can
help us in slowing down the di�usion process in parts of
the signal where discontinuities arise. As suggested in
[6], an interesting class of PDE's is de�ned by

F [c](t; s) =
@[F (@c(t; s)=@t)]

@t
(4)

where F : R�! R is an appropriate \force" function.
The case where F reduces to the identity function cor-
responds to the linear di�usion in Eq. (3) whereas, if

F (u) / u exp(�
u2

K
) ; (5)

with a positive thickness parameter K, the nonlinear
equation of Perona and Malik [7] is found.
Discretizing Eqs. (1) and (4) both in time and scale and
de�ning

ec(k; j) = c(k�t; j�s) ; �F (u) =
�s

�t
F (

u

�t
) ;

lead to

ec(k; j + 1) = ec(k; j) + �F (ec(k + 1; j)� ec(k; j))

� �F (ec(k; j) � ec(k � 1; j)): (6)

Assume now that

ec(k; j) � ec(k � 1; j) ' ec(k � 1; j)� ec(k � 2; j):

(This approximation can be justi�ed by some arguments
of equality of the left and right derivatives of c(t; s) at
a given time.) By decimating ec(k; j + 1) by a factor 2,
Eq. (6) yields

ec(2k; j+1) = ec(2k; j)+ �F (ed(2k; j+1))� �F (ed(2k�2; j+1)) ;

where

ed(k; j + 1) = ec(k + 1; j)� ec(k; j) : (7)

This means that the relations between (ec(2k; j); ec(2k +

1; j)) and (ec(2k; j + 1); ed(2k; j + 1)) are identical
to those existing between (cj(2k); cj(2k + 1)) and
(cj+1(k); dj+1(k)) in Fig. 1. In the present case, G,
A1 and A2 reduce to the identity operator and H is
obtained by cascading the memoryless nonlinear trans-
form �F with the �nite di�erence �lter with z-transfer
function (1� z�1).
This result does not mean that Fig. 1 corresponds to

an e�cient numerical method for solving a PDE since
we used a relatively rough discretization scheme. The
main point of this result is to rather provide an insight
into the possible choices for the nonlinear transform H.
By re
ecting on the classical choices made in scale-space
theory, e.g. (5), we can simply select a nonlinear trans-
form with a variety of well de�ned goals.
In addition to its denoising potential and similarly to the
scale-space analysis framework, this nonlinear multires-
olution framework also a�ords one the ability to retrieve
the details of the analysis if so desired.

4 Translation Invariance

The reconstruction property which has been imposed on
the nonlinear �lter bank in Fig. 1 is useful to guarantee
that the decomposition gives a complete representation
of the analyzed signal. Given that the considered �l-
ter bank is critically subsampled, it cannot however be
time-invariant. This implies that, if the decomposition
is used in a denoising algorithm, the estimation error will
be particularly sensitive to the positions of the disconti-
nuities in the signal. A similar problem is encountered
with wavelet decompositions for which time-invariant
versions have also recently been proposed [8], [9]. These
shift-invariant decompositions are based on an underly-
ing frame which is the union of di�erent orthonormal
bases. This characteristic simplify the implementation
of the decomposition and leads to simple reconstruction
formula. We next show how these methods extend to
the nonlinear case.
An undecimated decomposition can be deduced from

the non-redundant decomposition in Fig. 1 (withA1 and
A2 equal to identity) by the following recursive equa-
tions:



�dj+1(k) = �cj(k + 2j)� G[(�cj(k + 2j+1`))`2Z] ;
�cj+1(k) = �cj(k) +H[( �dj+1(k + 2j+1`))`2Z] ; (8)

where �c0(k) = c0(k). The coe�cients �cj(k) and �dj(k)
may be interpreted as components of the signal at res-
olution j and time-localization k and, we clearly have
cj(k) = �cj(2

jk) and dj(k) = �dj(2
jk). To compute the

coe�cients �cj(k) and �dj(k), we can note that if, for all
p 2 f0; : : : ; 2j � 1g,

cj;p(k) = �cj(2
jk + p) ; dj;p(k) = �dj(2

jk + p) ;

then,

dj+1;p(k) = cj;p(2k + 1) � G[(cj;p(2k + 2`))`2Z] ;
cj+1;p(k) = cj;p(2k) +H[(dj+1;p(k + `))`2Z] ;

and

dj+1;p+2j(k) = cj;p(2k + 2)� G[(cj;p(2k + 2`+ 1))`2Z] ;
cj+1;p+2j (k) = cj;p(2k + 1) +H[(dj+1;p+2j(k + `))`2Z] :

Thus, (cj+1;p(k); dj+1;p(k)) can be computed from
(cj;p(2k); cj;p(2k+1)) by using the analysis �lter bank in
Fig. 1 and (cj+1;p+2j (k); dj+1;p+2j (k)) is obtained from
(cj;p(2k+1); cj;p(2k+2)), in the same way. This means
that, when (cj;p(2k); cj;p(2k + 1)) have been computed,
we have just to shift by one sample the input cj;p(k) of
the �lter bank to generate (cj+1;p+2j (k); dj+1;p+2j(k)).
At each scale, we have two possibilities (shift or not),
which leads to 2jm di�erent critically subsampled repre-
sentations of the analyzed signal.

Di�erent fusion strategies may be thought of to re-
construct the signal from these di�erent representations.
We can for instance search for a \best" representation
or average the di�erent reconstructions. In this case, a
linear or nonlinear \mean" may be used. The median
�lter is often preferred because of its attractive property
of preserving edges.

5 Denoising with nonlinear decompositions

An underlying signal in noise problem is a frequently
encountered scenario in applications. Let,

x(k) = x�(k) + b(k)

where x�(k) is the signal of interest and b(k) is an addi-
tive noise.

Such an example is provided in Fig. 2. The signal of
interest is embedded in a noise whose probability distri-
bution is a Gaussian mixture. The standard deviation of
the noise is here equal to 92.97. The observed signal was
decomposed according to a nonlinear �lter bank decom-
position using a Perona-Malik force function. In this
simulation, the detail coe�cients were simply truncated
and a median based shift-invariant method was applied

to reconstruct the signal. For comparison, a similar de-
noising approach was performed using a Daubechies 4
orthonormal wavelet decomposition. It is clear that the
nonlinear method allows for a much improved preserva-
tion of the features in the original signal. This improve-
ment is con�rmed by the standard deviation of the re-
construction error which is equal to 39.19 for the wavelet
based approach whereas it is equal to 23.09 for the non-
linear decomposition method.

6 Conclusions

In this paper, we have shown some connections between
PDE's and nonlinear decompositions. These connec-
tions allowed us to build nonlinear �lter banks using
the tools of nonlinear di�usion. We have seen that such
tools provide promising results for signal denoising. By
the way, we have extended shift-invariant wavelet repre-
sentations to shift-invariant nonlinear decompositions.
Future work will be concerned with extensions of these
results to anisotropic multiscale processing of images.

7 References

[1] O. Egger, W. Li, M. Kunt, \ High compression image

coding using an adaptive morphological subband de-

composition", Proc. IEEE, Vol. 83, pp. 272-287, 1995.

[2] F. Hampson, J.C. Pesquet, \M -band nonlinear sub-

band decompositions with perfect reconstruction",

IEEE Trans. on Image Processing, to appear.

[3] S. Mallat, \A theory for multiresolution signal decom-

position: The Wavelet Representation", IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol. 11,

pp. 674-693, 1989.

[4] P.J. Burt, E.H. Adelson, \The Laplacian pyramid as a

compact image code", IEEE Trans. Commun., Vol. 31,

No. 4, pp. 532-540, 1983.

[5] J. J. Koendrink, \The structure of images", Biol. Cy-

bern., Vol. 50, pp. 363-370, 1987.

[6] I. Pollak, A.S. Willsky, H. Krim, \Scale-space analy-

sis by stabilized inverse di�usion equations", Technical

Report, Massachusetts Institute of Technology, 1996.

[7] P. Perona, J. Malik, \Scale-space and edge detection

using anisotropic di�usion", IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 12, No. 7, pp.

629-639, July 1990.

[8] R. Coifman, D. Donoho, \Translation-invariant denois-

ing", in A. Antoniadis, Editor, Wavelets and Statistics.

Lecture Notes in Statistics, Springer Verlag, 1995.

[9] J.C. Pesquet, H. Krim, H. Carfantan, \Time-invariant

orthonormal wavelet representations", IEEE Trans.

Signal Processing, Vol. SP-44, No. 8, pp. 1964-1970,

August 1996.



- A1

g

g

G H

6

-

?
-- A2

-

- cj+1(k)

dj+1(k)

cj(2k)

cj(2k + 1)
�

Figure 1: Nonlinear scale transition operator.
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Figure 2: Denoising example.


