
INVERSION OF H-ARMA MODELS

David DECLERCQ, Patrick DUVAUT and Jerome SOUBIELLE

ETIS URA CNRS 2235

6, avenue du Ponceau 95014 Cergy-Pontoise FRANCE

e-mail: declercq@ensea.fr

ABSTRACT

We present in this contribution the problem of nongaus-
sian H-ARMA models inversion. We show that very
classical methods of parameters identi�cation based on
the likelihood are une�cients in our case and we have
chosen a fractionnal distance minimisation approach to
estimate the nonlinearity. The ARMA coe�cients are
identi�ed with maximum likelihood estimators and a
comparison study with the cumulant based method has
been conducted on synthetic data.

1 INTRODUCTION

NongaussianH-ARMA models have been introduced in
[1] and [2]. The mean of generation of a H-ARMA pro-
cess is twofold: a �rst linear ARMA �lter that provides
a correlated gaussian process and then a nonlinear poly-
nomial transformation with a combination of Hermite
polynomials of various degrees. This kind of models is
very near to those used in nonlinear digital communi-
cations, and especially in satellite communications. In
these applications, the channels are considered as linear
and the nonlinear e�ects due to ampli�cation inside the
satellite are modeled by a polynomial system [3].
An H-ARMA(P; p; q) model is driven by the equations

x[n] =

pX
i=1

aix[n� i] +

qX
j=1

bj"[n� j] + "[n] (1)

y[n] =

PX
k=1

�kHk (x[n]) (2)

where "[n] is a standardised white gaussian noise. Those
equations de�ne a Markovian representation of the
model as x[n] can be rewritten as a state vector.
Previous contributions on this class of models have
precised the interesting properties of such processes,
especially concerning the ouput cumulants properties.
In this paper, we address the problem of inverting
H-ARMA models, that is to build estimators of the
model parameters. In [2], we gave an intuitive but sub-
optimal and computationally intensive solution to this
problem. We identify an H-ARMA model sequentially:

the nonlinear �k coe�cients �rst, then the ARMA co-
e�cients (ai; bj). We will show in section 2 that meth-
ods based on the likelihood are une�cients - almost for
the nonlinear part - and that the regularisation of a
penalty function can provide acceptable estimates. The
second part of the identi�cation procedure deals with
the ARMA �lter and we consider a likelihood approach
to achieve its estimation (section 3). A comparison be-
tween the likelihood approach and the cumulants based
method described in [2] is made. Finally, we discuss the
drawbacks of those kind of inversion approaches and give
the �rst keys to bypass them with the use of MCMC al-
gorithms.

2 NONLINEAR IDENTIFICATION

2.1 Failure of likelihood based methods

The �rst and natural idea when one has to identify a
model, in other words estimate the number of parame-
ters that describe the model and their values, is to make
use of the likelihood [4]. Various methods based on this
function are available: maximum likelihood, minimizing
a Kullback-Leiber distance, bayesian methods ...
For example, when one tries to identify a linear AR pro-
cess, the likelihood is gaussian
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given y[n] = 0 8n < 0, where �2 is the variance of the
input gaussian noise and a the vector of the autoregres-
sive coe�cients. y[1 ! N ] means that we observe N
samples of the output process.
The main reason that make these methods e�cient is
that a model is e�ectively the most likely given a set of
observations, what means that the likelihood function is
su�ciently regular and has a global maximum.
In the course of identifying the nonlinear part of
H-ARMA models, the likelihood has no explicit expres-
sion, but can be numerically calculated. Suppose that
we have a white gaussian noise x[n] �ltered by a Hermite
nonlinearity with only the two polynomials of degree 2
and 3: y = �2H2(x) + �3H3(x). We have generated



N = 2000 samples of such a process with �2 = 2 and
�3 = 1 and drawn the likelihood L(y[1! N ]; �2; �3) on
�gure 1. Knowing the nonlinear coe�cients, we have in-
verted the polynomial de�ned with (�2; �3) in order to
calculate the probability of the transformed process y[n]
[5]. We can notice that the likelihood function does not
exhibit a single maximum but rather a crest of maxima.
It is easy to understand that any method of identi�-
cation based on that form of likelihood will be trapped

somewhere in the crest. We have then to �nd other ways
to solve or, at least regularise, this problem (in the sense
of making it possible to identify).
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Figure 1: numerical likelihood of an H-ARMA process

2.2 Regularisation with fractionnal distance

A lot of distances are used in signal processing - between
processes, probability density functions, spectra ... we
can refer to [6] for an extensive presentation. We have
chosen, after a few attempts with classical distances such
as L1 or L2, a fractionnal distance between an histogram
of the data and a numerical evaluation of the posterior
distribution knowing the nonlinear coe�cients. The �rst
step is to obtain a normalised histogram f̂ of the data
(N = 2000) and to keep only the relevant values (those
which have more than 5 counts for example). This en-
sures that we will try to match the estimated distribu-
tion only on a restricted and valid domain. The distance
taken is de�ned as

d�(f̂ ; f) =

 X
i

�
f̂(i)� f(ij�2; �3)

��!1=�

� < 1 (3)

d� is then a function of (�2; �3) and the value of � has
been empirically �xed to 0:1. We have drawn on �gure
2 minus the distance d� in order to exhibit a maximum
instead of a minimum. We can remark that, with the
same process used in the above section, this kind of dis-
tance has a single maximum with a regular behaviour
in its neighbourhood. Using this fractionnal distance as

a penalty function, we have the solution:

(�̂2; �̂3) = min
�2;�3

d�(f̂ ; fj�2;�3) (4)

The global minimization is achieved using a sequential
grid search with decreasing step length. We use an ex-
haustive search in the parameter space because the clas-
sical means to increase the convergence rate such as a
gradient descent are sometimes trapped in local min-
ima. A combined algorithm with simulated annealing
and gradient descent has been tested. The same min-
imum as in the grid search strategy has been reached,
but in a more extensive time computation. The results
are reported in table 1.

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
−255

−250

−245

−240

−235

−230

−225

alpha3alpha2

Figure 2: regularisation of the inversion problem with a
fractionnal distance

3 ARMA IDENTIFICATION

As previously told, we make the identi�cation of the
nonlinearH-ARMAmodels with a sequential approach.
We have obtained the nonlinear coe�cients �k and with
this prior information, we face the problem of esti-
mating the ARMA order and coe�cients. In [2], we
have presented a method based on the covariance and
the bicovariance functions of the output process y[n].
This method provides acceptable results when we have
enough sample to yield accurate estimates for the co-
variance an the bicovariance of y[n]. Moreover, we have
shown in [1] that for H-ARMA process, the bicovari-
ance is well estimated when almost 3000 samples are
considered. To tackle with this limitation, we propose
in this section to build a MLE (Maximum Likelihood
Estimator) and compare the estimation performances
when the sample size become smaller N < 500.
Given the feasible AR coe�cients a andMA coe�cients
b, and knowing the Hermite coe�cients �k, the likeli-
hood function is L(y[1 ! N ]; a;bj�k) and cannot, as
in the previous section, be analytically expressed. We
must then evaluate it numerically. We describe below



the mean to obtain the likelihood for an AR �lter of
order p and an Hermite �lter H(x) =

PP

k=1 �kHk(x).

Let y[1! N ] be the observed data,

8i 2 [p+ 1; N ]

yi = [y[i] : : : y[i� p]]

Xi = [x[i] : : :x[i� p]] = H�1(yi)

where x[i] is a vector that collects the P1 � P

solutions of H�1(y[i])

� = fXki = [xki [i] : : : xki�p [i� p]]g

where xki [i] is one of the components in x[i].

� collects all the possible vectors

extracted from Xi.

Li(yi; a) =
X
k2�

f(X
k
i ;�p;�p) � J(H

�1
)[X

k
i ]

where f(Xki ;�p;�p) is the p-dimensional gaussian

density with mean �p and covariance �p

build with the AR coe�cients a.

J(H�1)[Xki ] is the jacobien of the

transformation H�1 at Xki .

and then

L(y[1 ! N ]; a) =
�Q

i
Li(yi; a)

�1=i

The maximisation of the function L(y[1! N ]; a) over
a gives the MLE estimator of the AR coe�cients.
Let us briey present the cumulant's method: it is based
on the theoretical expressions of the covariance and the
bicovariance of the H-ARMA process y[n] in terms of
the covariance of the linear process x[n]. Those expres-
sions are determined knowing the estimates of �k and
we make use of them to build estimators of the autoco-
variance sequence of x[n]. A Levinson type algorithm
gives the ARMA coe�cients. We can refer to [2] for
more details.
We have gathered in table 1 the results on a synthetic
sample drawn from a H-ARMA model with hermite co-
e�cients (�2 = 2; �3 = 1), AR poles p = (0:9; 0:7) and
no MA zeros. We study the inuence of the number of
observation samples on the estimation accuracy for the
two methods.

N 100 500 3000

� (2.38,0.86) (1.97,0.96) (2.02,-1)

p (cumulants) (0.99,0.62) (0.95,0.45) (0.898,0.66)

p (MLE) (0.94,0.63) (0.93,0.64) (0.9,0.69)

Table 1: estimations of an H-ARMA model

A �rst sight at this table shows that the accuracy of
the estimators increases with the number of samples.
The nonlinear parameters are well estimated for very
large samples (notice that �3 is determined up to a sign)
but badly for N = 100. This was expected and this

poor behaviour comes mainly from the estimation of an
histogram with only 100 points. We also see that the
MLE esimators of the poles of the linear �lter are always
better than the cumulant's method ones. Actually, the
cumulants based method seems not to be valid, even for
large sample sizes, while the MLE give good estimates
for samples sizes greater than N = 1000. We stress the
fact that the choosen nonlinear coe�cients lead to a hard
nonlinearity and therefore to a bad behaviour for the
estimators. Other cooler nonlinearities (with di�erents
coe�cients) have provided more accurate estimates.

4 MCMCAPPROACH TO H-ARMA IDENTI-

FICATION

The two major drawbacks to the estimation procedures
described in the previous sections are (i) the fact that we
estimate separately the nonlinear and the linear coe�-
cients ; it is well known that sequential methods lead to
sub-optimal estimators for the parameters and it would
be preferable to use a global methods (ii) these methods
are valid when a large number of observation samples
are concerned.
With the help of the Markovian description of the model
(1),(2), we can solve the problem of parameter esti-
mation by a fully Bayesian approach [7]. The key of
such a method is the famous data augmentation proce-
dure which allows to express analytically the condition-
nal posterior densities of the coe�cients with respect to
the augmented samples [8]. We can therewith make use
of a Monte Carlo Markov Chain algorithm to sample
from these posterior distributions and obtain maximum
a posteriori estimators. This approach allows to jointly
estimate both the linear and the nonlinear parameters
and to overcome the problem of small observation sam-
ple sizes. It has moreover the advantage of being non-
sensitive to the initialisation of the algorithm, which is
actually a major drawback in MLE methods.
Fisrt, we have to modify equation (2) by introducing a
regularisation white gaussian noise, which can be inter-
preted as an estimation deviate:

y[n] =

PX
k=1

�kHk (x[n]) + �[n] (5)

The Bayesian expansion of the fully posterior density
follows

p(x[1! N ];�; a; �2
" ; �

2
� jy[1! N ])

/ p(y[1! N ]jx[1! N ];�; �2
�) p(x[1! N ]ja; �2

")

p(�; �2
�) p(a; �

2
" ) (6)

where the likelihood of the augmented model
p(y[1 ! N ]jx[1 ! N ];�; �2

�) is gaussian due to the
gaussianity of �[n]. The conjugate priors are gaussian

for a and � and inverse gamma for �2
� and �

2
" : these

parameters are sampled directly with Gibbs steps. The



simulation of the hidden state variable x[1! N ] is more
di�cult and a Metropolis-Hastings step is required.
The implementation of this algorithm for the inver-
sion of H-ARMA models is under investigation and we
are facing di�erent problems such as the very low rate
of convergence and the multimodality of the posterior
density when hard nonlinearities are considered. The
MCMC identi�cation of this family of nonlinear pro-
cesses will be detailled in a future contribution, and will
be compared with the methods described in this paper
and other classical Bayesian approaches (EM,...).

5 CONCLUSION

We have presented in this paper the inversion of
H-ARMA nongaussian-nonlinear models. We achieve
this identi�cation with two separated steps, the nonlin-
ear Hermite coe�cients �rst and then the ARMA part.
The former problem is ill-conditionned in the sense that
the likelihood function exibits a crest of maxima and a
regularisation of the problem with the help of a fraction-
nal distance has been considered. We achieve the min-
imisation of that distance with a combined simulated
annealing-gradient descent algorithm. For the ARMA

coe�cient, we have considered maximum likelihood esti-
mators instead of the cumulant based method presented
in [2]. This method allows to obtain more accurate es-
timations for every sample sizes. We have discussed the
drawbacks of those methods which are mainly the se-
quential aspect of the approach and its lack of robust-
ness when the number of observations becomes small.
We introduce briey a MCMC based method, which
seems to be convenient for the identi�cation of nonlin-
ear processes. We will develop this approach in a future
contribution.
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