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ABSTRACT

In this paper a class of conditional heteroscedas-

tic models is introduced in the context of sea clut-

ter modelling. In particular, an Auto-regressive

(AR) process driven by conditional heteroscedastic

(CH) errors (AR-CH model) is proposed as a model

for the time evolution dynamics of the modulating

component of sea clutter. The CH process param-

eters of the AR-CH model determine the weight

of the tails of the marginal distribution, while the

AR component largely determines the correlation

structure. Di�erent functional forms of conditional

variance models are investigated using real sea clut-

ter data.

1 INTRODUCTION

Sea clutter is widely agreed to be a compound pro-

cess [8] where the fast oscillating speckle component

is modulated by a slowly varying underlying pro-

cess, �, associated with the swell. It has been found

empirically that the single point statistics of sea

clutter is very well modelled by the K-distribution

[8]. The K-distribution results from a Rayleigh dis-

tributed speckle, modulated by Gamma distributed

process, �. Sea clutter has also been modelled as a

Spherically Invariant Random Process (SIRP) [2],

of which the K-distribution is a member. SIRPs

allow the modelling of correlations of the speckle

component, but assume the underlying modulation

process, �, to be independent from one spherically

invariant random vector (SIRV) to the next. How-

ever, modelling of the correlation structure of the

modulating component becomes important, partic-

ularly in the context of CFAR detection.
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Using arguments based on birth-death migration

processes, Jakeman [4] derives a Stochastic Dif-

ferential Equation (SDE) model for the underly-

ing modulating process of sea clutter. However,

although the resulting process has a Gamma dis-

tributed single point statistics, such models are ca-

pable only of capturing a limited number of auto-

correlation functions [7]. Furthermore, the practi-

cal utility of such models is limited in that when

discretized, the resulting di�erence equations as-

sign non-zero probability to negative values of �.

In this paper models based on an auto-regressive

process driven by conditionally heteroscedastic er-

rors are proposed to model the time evolution

dynamics of log �. Such models, just like Jake-

man's SDE model, allow the noise variance to be

state dependent (i.e. , depend on previous observa-

tions, prediction errors, or any other past informa-

tion). Unlike the SDE based model, however, the

auto-regressive process driven by conditional het-

eroscedastic noise provides a 
exible framework for

modelling processes with a wide range of marginal

distributions and correlation functions.

In section 2 conditional heteroscedastic models

studied in this paper are formally introduced. Re-

sults obtained using autoregressive models driven

by conditional heteroscedastic noise applied to real

sea clutter data are presented in section 3. Dis-

cussion of the results and implications to sea clut-

ter modelling is presented in section 4, while the

summary of the main points raised in the paper is

presented in section 5.

2 THE MODEL

Consider a model for a process yt, which in the

present case will correspond to the logarithm of the

underlying modulating component of sea clutter
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(i.e. , yt = log �t). Denote an auto-regressive model

of order p driven by conditional heteroscedastic

process of order q (with parameter vector � =

f�0; �1; : : : ; �qg) by AR(p)-CH(q). Such a process

takes on the form

yt = �0 +

pX

i=1

�iyt�i + et

et = h
1=2
t �t �t � N(0; 1)

ht = f(�; et�1; : : : ; et�q; yt�1; : : : ; yt�q)

The above model is conditionally Gaussian, but the

process variance is not necessarily constant. In-

stead, the variance is allowed to depend on the

previous observations, previous errors or any other

past information [3].

The most widely studied conditional het-

eroscedastic model is the original ARCH model

of Engle [3] denoted by ARCH(q). For such a

model the current variance is a linear combina-

tion of previous residual squared errors, i.e. , ht =

�0 +
Pq

j=1 �je
2

t�j . However, due to positivity con-

straints on the model parameters �, it proves to be

more convenient to work with exponential condi-

tional heteroscedastic models [1] of the form

ECH(q) log ht = �0 +

qX

j=1

�j log y
2

t�j

EARCH(q) log ht = �0 +

qX

j=1

�j log e
2

t�j

Such models have no positivity constraints on the

parameters, and the model parameters can readily

be estimated using simple scoring algorithm [3, 6].

A large body of literature exists on the moment

structure [5], stationarity [3] and parameter esti-

mation [6] of ARCH processes. Although condi-

tionally Gaussian, the study of higher order mo-

ments of the marginal distribution indicates that

the conditional heteroscedastic processes are lep-

tokurtic (heavy tailed).

3 RESULTS

The results presented in this section are based on

the data obtained using RSRE coherent I-band

radar operating in polarimetric mode with record-

ings made in HH and VV polarisation at the e�ec-

tive sampling frequency of 500Hz per channel. The

raw data has been averaged over blocks of 250 sam-

ples to remove the speckle. The histogram of 5000

samples of the averaged data corresponding to the

modulating component of sea clutter is shown in

�gure 1 and 2, for HH and VV polarisation chan-

nels, respectively.
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Figure 1: Histogram of HH data
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Figure 2: Histogram of VV data

The histogram in �gure 1 shows the spiky na-

ture of the horizontally polarised clutter. The log-

Normal and Gamma distributions corresponding to

maximum likelihood parameter estimates, shown in

�gure 1, demonstrate that the single point statis-

tics of the modulating component of the horizon-

tally polarised clutter is well modelled by the Log-

Normal distribution. On the other hand, �gure

2 indicates that the single point statistics of the

modulating component of vertically polarised sea

clutter is equally well modelled by log-Normal and

Gamma distributions.

Although widely accepted to be Gamma dis-

tributed, results presented in �gure 1 and 2 sug-
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gest that the marginal distribution of the modulat-

ing component varies widely with polarisation, sea

state, viewing angle, etc. The good �t of the log-

normal distribution to the marginal indicates that

the modulating component of the sea clutter, �, is

best modelled in the logarithm domain.

AR(p)-EARCH(q) and AR(p)-ECH(q) models

were �tted to 200 samples of the logarithm of av-

eraged data (i.e. , log �). The parameters were es-

timated by maximum likelihood using the scoring

algorithm, for di�erent model orders p and q. It

was found that no signi�cant improvement in mod-

elling ability is obtained for models with q > 1.

The averaged log likelihoods obtained for the

200 sample training set for models AR(p), AR(p)-

EARCH(1) and AR(p)-ECH(1) are shown in �g-

ures 3 and 5 for horizontally and vertically po-

larised data, respectively. The corresponding aver-

aged log likelihoods for a 200 sample test set (taken

from the same clutter �le) for the abovementioned

models are shown in �gure 4 and 6.
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Figure 3: Log Likelihood of HH training data
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Figure 4: Log Likelihood of HH test data
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Figure 5: Log Likelihood of VV training data
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Figure 6: Log Likelihood of VV test data

4 DISCUSSION

The results obtained for vertically polarised clut-

ter, shown in �gure 5, indicate that the log likeli-

hood for the training set is approximately the same

for all three models (AR(p), AR(p)-EARCH(1) and

AR(p)-ECH(1)). Although for the training data

set, the AR(p)-EARCH(1) model outperforms the

other two models, it can be seen from �gure 6 that

this model does not generalise well to the test data

set. In fact, in the case of the vertically polarized

data, the AR(p) and AR(p)-ECH(q) models are es-

sentially indiscernible.

In the case of horizontally polarised clutter, it

can be seen from �gure 3 and 4 that the AR(p)-

ACH(1) model outperforms the other two models in

the average log likelihood sense on both the train-

ing and the test data sets. The improvement is

very marked, both with respect to the pure au-

toregressive process AR(p), as well as the AR(p)-

EARCH(1) model. This result indicates that the
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modulating component of sea clutter is not well

modelled by log-Normal distribution, which would

be consistent with a pure autoregressive process in

the logarithmic domain. It does, however, indi-

cate that there is a strong dependence of the pro-

cess variance on the previous observations (i.e. ,

ht = f(log y2)).

Such behaviour is not uncharacteristic of real

world processes. In �nancial time series, where the

ARCH models were �rst introduced, the process

variance is a function of previous prediction errors.

Such dependence stems from the fact that uncer-

tainty in the past indicates uncertainty about the

future.

In the case of sea clutter, the modulating com-

ponent is associated with the swell structure of

the sea. It is not unreasonable to expect that a

stochastic model associated with this process has

non-constant noise variance. Such state-dependent

behaviour is clearly visible in the stochastic di�er-

ential equation formulation based on birth-death

migration processes used by Jakeman [4] to justify

the Gamma marginal distribution for the modulat-

ing component of sea clutter.

Conditional heteroscedastic noise models, due to

the inherent state dependence of the noise process

variance, can also potentially explain the sea spike

behaviour observed in sea clutter. Furthermore, it

has been found from experiments on real sea clut-

ter data that the auto-regressive models driven by

conditional heteroscedastic noise can reproduce a

wide range of marginal distributions and correla-

tion functions observed in sea clutter.

5 SUMMARY

In this paper Auto-Regressive models with Condi-

tional Heteroscedastic errors (AR-CH models) were

introduced in the context of modelling of the mod-

ulating component of sea clutter.

Using empirical data, it was demonstrated that

the logarithm of the modulating component is well

modelled by the AR-ECH model, for which the log

variance is a regressive function of the logarithm

of previous observations. Very strong evidence

for conditional heteroscedascity was found, particu-

larly for spiky (e.g. , horizontally distributed) clut-

ter.

Due to the conditional Gaussian form of the AR-

CH models, the underlying modulating component

of the clutter is conditionally log-Normal, although

the corresponding marginal is not. In fact, depend-

ing on the model parameters, the marginal can be

leptokurtic and a wide range of correlation func-

tions can be entertained.

Though presented in the context of modelling

the temporal dynamics of sea clutter, the models

presented in this paper can readily be extended to

model the spatio-temporal dynamics of the clutter.

Such models form the basis for adaptive CFAR de-

tectors that are currently being studied by the au-

thors.
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