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ABSTRACT

By using multiple receiving antennas and modeling co-
channel interference (CCI) together with the noise as additive
temporally white Gaussian noise with some spatial color, CCI
may be suppressed. This paper proposes spatio-temporal in-
terference rejection combining by modeling the CCI and noise
as an autoregressive Gaussian process. In this way, the joint
spatial-temporal properties of the CCI may be taken into ac-
count. A training sequence based estimator is proposed, and
simulations show large gains in CCI rejection as compared to
only spatial processing for small antenna arrays in interfer-
ence limited GSM urban scenarios. An example with data
collected with a dual polarized antenna in a suburban envi-
ronment is also presented.

1 INTRODUCTION

The use of wireless communication systems has undergone a
rapid growth during the last decade. The physical limitations
of the radio channel and the limited radio spectrum makes it
non-trivial to meet the demands on higher data rates, quality
and availability. Among the possibilities is a more e�cient
use of the spatial dimension by employing multiple antennas
at di�erent locations in space with possibly di�erent polar-
izations. This work is concerned with detecting the trans-
mitted data in the presence of co-channel interference (CCI)
and intersymbol interference (ISI) using a maximum likeli-
hood sequence estimator (MLSE) and multiple antennas at
the receive side.
Previous work includes [2, 3, 9, 11], in which the CCI is

modeled as a Gaussian noise process. In [2, 3], the noise pro-
cess is assumed to be temporally white. Only the spatial
color of the interference is taken into account, and an MLSE
is implemented with a vector valued Viterbi algorithm. In
[9, 11], the temporal correlation of the interference is noted,
and space-time receive �lters are derived to reduce the obser-
vations to a scalar statistic.
In the general case, the temporal correlation of the noise

process may cause the number of states in the sequence es-
timator implemented with the Viterbi algorithm to become
very large. In addition, with short data bursts, estimating
the channel for the signal of interest and the second order
statistics of the noise is a non-trivial task. Therefore, the
practical implementation in [7, 8], models the noise as tem-
porally white. If only the spatial correlation of the CCI is
taken into account, the number of sensors needed may be
quite large, as the CCI contribution is to be low rank in or-
der to be e�ectively suppressed [7]. However, by taking the
joint spatial-temporal properties of the CCI into account, the

condition is that the number of interferers is to be strictly less
than the number of antennas [9].
In this work, we propose modeling the CCI and noise as a

Gaussian vector valued autoregressive (VAR) process. In this
way, it is possible to take the joint spatial-temporal correla-
tion of interference into account and solve the problem of CCI
reduction and ISI equalization. The resulting implementation
will then use the parameters of the VAR process as a vector
valued FIR whitening �lter to temporally whiten the noise
and an MLSE, implemented with the Viterbi algorithm, to
detect the transmitted data. A training sequence based es-
timator of the VAR parameters and the �ltered channel is
proposed, and performance is investigated by means of sim-
ulations of GSM scenarios. The numerical results show large
gains in interference suppression for small antenna arrays.
This is signi�cant, as mobile terminals with multiple anten-
nas may be one way to balance up and downlink performance
[3]. Clearly, space limitations will prevent equipping the mo-
bile terminals with a large number of antennas In addition,
results from data collected in a suburban environment with
a dual polarized antenna are included.

2 DATA MODEL

The model used to describe the symbol sampled signal re-
ceived by an array with m elements is

x(t) = Hs(t) + n(t) ; (1)

where x(t) is an m� 1 vector representing the array output
andH is anm�Lmatrix modeling the linear channel between
the transmitter and the receiving array,

H = [h1 h2 : : :hL] :

The symbol sequence transmitted from the user of interest,
s(t), is used to construct s(t) as

s(t) = [s(t) s(t� 1) : : : s(t� L+ 1)]T :

Oversampling with respect to the symbol period may be mod-
eled by increasing the number of channels.
The term n(t) represents noise and interference. In [2, 3,

7, 8], this term is modeled as a temporally white complex
Gaussian process. This is clearly suboptimal as the CCI has
the same properties as the signal of interest, �nite alphabet
and in the time-dispersive case, some temporal correlation.
The goal of this work is to take the joint spatial-temporal
correlation of the noise and CCI into account in a feasible
way. An attractive model for this purpose is to use a Gaussian



VAR process. The noise is then assumed to obey the following
model

n(t) =

KX
k=1

Akn(t� k) + e(t) ; (2)

where e(t) is a temporally white complex Gaussian process
with some spatial color, Q,

E fe(t)e�(s)g = Q�t;s :

Note that this model also is an approximation. The observa-
tions will in general not obey this AR-model. The �nite al-
phabet property is for example not taken into account. Some
attractive features for this choice are

� The whitening �lter, which coincides with the Kth order
best linear predictor, is given by the process parameters
fAkg, and is FIR. The FIR �lter introduces a �nite num-
ber, K, of additional states in the sequence estimator.

� For zero thermal noise and Gaussian transmitted signals,
the true moving average model for the interference may
be represented by a VAR process [6]. For interference
limited scenarios with the number of interferers strictly
less than the number of antennas, it appears suitable.

2.1 Spatio-Temporal Formulation

It is convenient to introduce the following notation. Collect
K + 1 vectors x(t) into the vector X (t) as

X (t) =
h
x
T (t) xT (t� 1) : : : x

T (t�K)
iT

;

and form the m(K + 1)� (L+K) block Toeplitz matrix H,

H =

2
64
h1 h2 � � � hL

. . .
. . .

h1 h2 � � � hL

3
75 :

With

S(t) = [s(t) s(t� 1) : : : s(t� L�K + 1)]T ;

and N (t) de�ned similar to X (t), the following space-time
model may be formulated from (1):

X (t) = HS(t) +N (t) : (3)

In addition, with

A = [A1 : : : AK ] ; W(A) = [Im �A] ;

the VAR model of (2) may be formulated as

W(A)N (t) = e(t) : (4)

3 ESTIMATORS

3.1 Sequence Detection

Let us for a moment assume that all parameters are known.
Consider (3) and (4). Multiplying both sides of (3) with
W(A) and using (4) gives

W(A)X (t) = BS(t) + e(t) (5)

where B de�ned as

B =W(A)H = [b1 b2 : : :bL+K ] ; (6)

and represents the concatenated response of the AR-predictor
W(A) and the channel H, i.e. H convolved with the AR-
predictor.
Sequence estimation is considered, although other detec-

tion schemes are also applicable. Due to the Gaussian prop-
erty of the noise, the maximum likelihood sequence estimate
is given by

fŝ(t)g = arg min
fs(t)g

X
t

kW(A)X (t)� BS(t)k2Q�1 ; (7)

where kzk2W = z
�
Wz. Note that the metric increment, i.e.

each term in the sum, is a function of S(t), and that the
search over allowed sequences may be implemented with the
Viterbi Algorithm with a memory of L+K � 1 symbols.
Whitening the noise introduces additional intersymbol in-

terference (ISI), and it is of interest to keep the number of
states small. Similar to e.g. [11], it is possible to rewrite the
sequence metric, in order to arrive at an alternative imple-
mentation with a matched space-time �lter followed by an
MLSE operating on a scalar signal.

3.2 An Unstructured Estimator

As is clear from the previous section, the channel and the
noise parameters are needed for the sequence detection. Al-
though the optimality of the MLSE with estimated parame-
ters may be discussed, the approach taken is to estimate the
parameters using data from a training period, and then use
the estimated parameters in (7) to obtain the sequence esti-
mate. It is assumed that the signal of interest and the inter-
ference are roughly burst-synchronized and that the scenario
is time-invariant so that all parameters may be estimated
during the training period. An example of such a system is
the GSM system with synchronized base stations and not too
large cells so that the synchronism is reasonably accurate.
A simple, unstructured approach is now taken. If the struc-

ture of B =W(A)H in (6) is neglected, the model of (5) may
be recognized as an ARX model [10]. The maximum like-
lihood (ML) estimates of the parameters are now derived.
Equation (5) may be rewritten as

x(t) = [A B] z(t) + e(t)

where

z(t) =
h
x
T (t� 1) xT (t� 2) : : : x

T (t�K) S
T (t)

iT
:

During the training period, s(t); t = t1 : : : tN is known which
means that z(t) may be formed for t = tL+K : : : tN . Under
the assumption that the noise and CCI are uncorrelated with
the signals, the negative likelihood function is given by

l(A;B;Q) = ln jQj+ trace C(A;B)Q�1
;

where

C(A;B) = R̂xx � R̂xz[A;B]
�

� [A;B]R̂�

xz + [A;B]R̂zz [A;B]
�

;

R̂zz =
1

N � L�K + 1

NX
i=L+K

z(ti)z
�(ti) ;

and with R̂xz and R̂xx formed as R̂zz. As is well known,
l(A;B;Q) is minimized with respect to Q for Q̂ = C(A;B).
Neglecting constants, the concentrated cost function becomes

l(A;B) = log jC(A;B)j = log jR̂xx � R̂xzR̂
�1
zz R̂

�

xz

+ ([A;B]� R̂xzR̂
�1
zz )R̂zz([A;B]� R̂xzR̂

�1
zz )

�

j



which is minimized for [A;B] = R̂xzR̂
�1
zz [10]. This requires

R̂zz to be invertible, which it is with probability one for
Km + L + K � N � L � K + 1. Thus, under the model-
ing assumptions, the ML estimates are given as

[Â; B̂] = R̂xzR̂
�1
zz ; Q̂ = R̂xx � R̂xzR̂

�1
zz R̂

�

xz :

For K = 0, only spatial interference rejection, the estimates
coincides with the approach taken in [3, 7, 8].
The estimator is sub-optimum in the sense that the struc-

ture of B = W(A)H is not taken into account. This means
that the model is over-parameterized, which will lead to
higher variance in the estimated parameters. Formulating es-
timators that take the structure of B into account is also pos-
sible. An alternative is the iterative generalized least squares
method [10]. Preliminary investigations indicate that the per-
formance gain using a structured estimator is relatively small.
However, the estimates are computed in a simple way, and
for the sequence detection, an estimate of B is needed rather
thanH. If a training sequence of lengthN is used, a necessary
condition for identi�ability is that the number of parameters
to be estimated is less than the number of equations,

m
2 + 2Km

2 + 2(L+K)m � 2(N � L�K + 1)m

Thus, the number of unknown parameters increases with
m2 +m for each extra temporal lag, K. This prevents using
this form of unstructured modeling of the CCI and noise for
large antenna arrays. On the other hand, for large antenna
arrays, spatial interference rejection may be su�cient.

4 NUMERICAL EXAMPLES

Simulations of synchronized GSM scenarios with two and four
antennas were conducted. The fading was modeled as in-
dependent from antenna to antenna, and each antenna was
equipped with a fourth order Butterworth �lter with a 3dB
bandwidth of 200 kHz. The raw baud rate is 270 kbit/s, and
GMSK modulation with BT = 0:3 was used [5]. The train-
ing sequence is 26 symbols long. Ideal frequency hopping was
assumed, so that the channel realizations were independent
from burst to burst, and the channels were assumed time-
invariant during the bursts.
In the �rst scenario, an antenna with two elements was

used, and one synchronized interferer was present. The chan-
nels for the signal of interest and the interferer were GSM typ-
ical urban (TU) from [4] with a time-dispersion of about one
symbol period. Di�erent choices of K were considered, and
K = 0 corresponds to the previously studied spatial interfer-
ence rejection in [2, 3, 7, 8]. The length of the �ltered channel,
B, was held constant (2� 5) so that the number of states in
the sequence estimator was the same for all choices of K. The
signal to noise ratio (SNR) after the receive �lters was 20 dB
at each antenna, and the carrier-to-interference ratio (C/I)
was varied. The raw bit-error-rate (BER) after detection was
considered, and in Figure 1 the results are shown. This exam-
ple demonstrates that taking the spatio-temporal properties
of the interference into account may give substantial gains in
terms of interference rejection. For K = 1, the gain over the
conventional spatial interference rejection is about 10 dB at
BER 5%. The region of interest is usually 1-10% BER for
GSM. For K = 2, a gain of additional 15 dB is obtained. For
high C/I, the noise is the dominant error source, and the over-
modeling of the temporal correlation leads to higher BER for
the proposed approaches, as the number of parameters to be
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Figure 1: Typical urban scenario, two antennas, SNR 20 dB

estimated is larger. However, for urban environments, CCI
is probably the dominant problem. It is also the noise that
causes the K = 2 curve to be at for medium CCI. At lower
SNR, the \knee" is present for higher BER.
Next, an array with four diversity channels in an inter-

ference limited scenario, SNR 20dB, was considered. Four
channels with independent fading may be obtained with for
example two dual polarized antennas with large separation.
The channels of the signal of interest and the interferers were
again the TU channel, and the number of interferers was var-
ied. For a single interferer, spatial interference rejection usu-
ally su�ces, but as can be seen in Figure 2, joint spatio-
temporal processing provides gains in interference rejection
also in this case. For high C/I, the scenario is noise limited,
and estimation errors cause the spatio-temporal modeling to
perform worse than only spatial processing with K = 0.
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Figure 2: Typical urban scenario, d = 1; 2; 3 interferers, four
antennas, SNR 20 dB

Finally, the impact of time-dispersion was studied . The
channels of the signal of interest and the interferer were mod-
eled as two-ray channels. The time-delays were the same for



both antennas, and the fading was assumed independent from
antenna to antenna. The continuous time impulse response
was thus h0�(t) + h

1�(t � �). The delay of the second was
varied in steps of Tb=4, where Tb is the bit-period. In Figure
3, the results are shown. In this simulation, the length of the
�ltered channel, B was increased with K. As can be seen, the
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Figure 3: Two-ray channels, SNR 20 dB, C/I -6dB, two an-
tennas

spatio-temporal modeling of the co-channel interference may
handle greater time-dispersions. For zero time-dispersion, the
interference is rank one, and spatial only processing su�ces
for interference rejection. For greater time-dispersions, joint
spatio-temporal processing is required.

5 EXPERIMENTAL RESULTS

To further investigate the performance of joint spatial-
temporal processing for interference rejection, data collected
in a suburban environment in D�usseldorf, Germany, with a
testbed for the air interface of a DCS-1800 base station [1] was
processed. Two sets of data were simultaneously collected,
one set with data from a dual polarized array with eight out-
puts and one set with data from a single dual polarized sector
antenna with two outputs. One mobile transmitter and one
interferer were present on the air simultaneously.

For the dual polarized sector antenna with two outputs, a
gain of 3-5 dB was observed at BER 0.01-0.1. The results of
processing 20000 GSM bursts are shown in Figure 4.

The time-dispersion was very small, and spatial interfer-
ence rejection su�ced for interference rejection with the an-
tenna array. In fact, estimation errors made the spatio-
temporal processing perform slightly worse than spatial-only
processing.

6 SUMMARY

Autoregressive modeling of the noise and CCI was proposed
for the purpose of spatio-temporal interference rejection com-
bining. A training sequence based estimator was studied in
interference limited scenarios in simulations and on experi-
mental data collected in a suburban environment. The ex-
amples illustrated that the spatio-temporal processing is ad-
vantageous for small antenna arrays. For large antenna ar-
rays and a small number of interferers, spatial-only processing
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Figure 4: Experimental data, dual polarized sector antenna.

may yield satisfactory performance. In addition the simula-
tions indicated the tradeo� between between increased inter-
ference rejection and estimation errors due to the increasing
number of parameters when only a short training sequence is
available.
Acknowledgments

The authors are grateful to Dr S�oren Andersson and Dr Ari
Kangas, Ericsson Radio Systems AB, Kista, Sweden for gen-
erously providing the data used in the experiment.

REFERENCES

[1] S. Andersson, U. Forss�en, J. Karlsson, T. Witzschel, P. Fis-
cher, and A. Krug. Ericsson/Mannesmann GSM �eld-trials

with adaptive antennas. In Proceedings IEEE Vehicular Tech-
nology Conference, pages 1587{1591, Arizona, Phoenix,USA,
May 1997.

[2] G.E. Bottomley and K. Jamal. Adaptive Arrays and MLSE
Equalization. In Proceedings of 45th IEEE Vehicular Tech-
nology Conference, July 1995.

[3] M. Escartin and P.A. Ranta. Interference Rejection Com-
bining with a Small Antenna Array at the Mobile Scattering

Environment. In Proc. SPAWC, pages 165{168, April 1997.

[4] ETSI. Digital Cellular telecommunications system (Phase
2+); Radio transmission and reception (GSM 05.05). July
1996.

[5] ETSI. Digital Cellular telecommunications system; Modula-
tion (GSM 05.04). May 1997.

[6] A. Gorokhov, Ph. Loubaton, and E. Moulines. Second or-
der blind equalization in multiple input multipel output �r
systems: a weighted least squares approach. In Proceedings
ICASSP, pages 2417{2420, Atlanta, USA, May 1996. IEEE.

[7] S. Mayrargue. Practical Implementation of a Multisensor Ar-
ray Receiver Structure for Wireless Communications. In Proc.
SPAWC, pages 201{204, April 1997.

[8] F. Pipon, P. Chevalier, P. Vila, and D. Pirez. Practical Im-

plementation of a Multichannel Equalizer for a Propagation
with ISI and CCI - Application to a GSM Link. In Proceed-
ings IEEE Vehicular Technology Conference, pages 889{893,
May 1997.

[9] D.T.M. Slock. Spatio-Temporal Training-Sequence-Based
Channel Equalization and Adaptive Interference Cancella-

tion. In Proceedings ICASSP, Atlanta, Georgia U.S.A., May
1996.

[10] T. S�oderstr�om and P. Stocia. System Identi�cation. Prentice
Hall, 1989.

[11] P. Vila, F. Pipon, D. Pirez, and L. Fety. MLSE Antenna Di-
versity Equalization of a Jammed Frequency-Selective Fading
Channel. In Proceedings of EUSIPCO-94, Seventh European
Signal Processing Conference, September 1994.


