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ABSTRACT

Low power and low complexity algorithms for signal process-

ing applications have gained increasing importance with the

deployment of portable communication equipment. Most of

the current power reduction techniques rely on reducing the

power by VLSI implementation. This approach is expensive

and limited by technology. Hence algorithm design optimiza-

tion is a must for low energy consumption. Here, we propose

using �nite memory detection algorithms as low complexity-

low energy near optimal detection algorithm that trades a

small amount of detection performance for a reduction in

complexity and power consumption. The negligible loss in

detection performance is easily accommodated in wireless

video and audio transmission applications. In data applica-

tions, this small loss can be further reduced with error cor-

recting codes at the expense of a slight loss in communication

bandwidth. We present simple algorithms for deriving the

near optimum �nite memory detectors in the time invariant

and time variant case. The same algorithms can be used in

tandem con�gurations in decenteralized detection.

1 Introduction

Finite memory detection has been the subject of many pa-

pers for almost three decades. It was �rst introduced in [1]

and [2]. These two references dealt with the problem in an

asymptot sense, i.e. if the number of observations is in�nite.

Finite memory detection can be considered as a quantized

detection problem, but one in which the quantization lev-

els at each observation are adapted based on the previous

observation(s). Numerous results have been reported in the

�eld of the theory and applications of quantized detection

[3][4][5][6]. In most of that work, and due to the intractability

of the probability of error function in such cases, an asymp-

totic measure of the performance corresponding to an in�nite

observation size and a very low signal to noise ratio is op-

timized. Since independence between observation vectors is

usually assumed, the scalar quantizers for the various ob-

servation vector components were identical. Following [2],

the problem of �nite memory detection can be formulated

as follows. After each observation,k, store only the statistic

Tk. De�ne Tk by Tk = fk(Tk�1; Xk), where Xk is the cur-

rent observation. The function fk is generally time variant,

but can be constrained to a time invariant function as in [2].

Also, de�ne a decision function dk by dk = d(Tk). If Tk can

be represented by a �nite number of bits, this algorithm is

called �nite memory detection. In [1] it was proved that us-

ing a time varying fk you need only 2 bits to guarantee that

the probability of error tends to zero as the observation size

goes to in�nity. Using a time invariant function fk = f , it

was shown in [2] that you generally don't have an optimal

algorithm but rather a class of �-optimal rules, i.e. for any

strictly positive � there is a rule, function f , for which the

di�erence between the probability of error and the optimal

probability of error is less than �, and there is no rule for

which � is zero.

Minimizing the asymptotic probability of error is theoreti-

cally interesting, and perhaps even of practical interest in

large sample observations, but a more important problem

would be to minimize the probability of error after a �nite

number of observations. In [7], simple thresholding of the

observation was used, with the thresholds determined by as-

suming an open ended problem, i.e. the number of observa-

tions is unknown. In [8] the problem of Gaussian observa-

tions was dealt with, and it was proved that simple thresh-

olding of the observations was optimal in the time invariant

case for symmetric problems if 1 bit is used to represent Tk.

In [9] ( and also in [10] ), an optimal time varying rule was

found to be a likelihood threshold rule. This simpli�es the

search for such a rule quite a lot. Moreover, if the likelihood

ratio is monotone in the observation variable, the detector

will just be a simple threshold device for the observation.

But no ways for �nding these thresholds were given in these

papers.

The same problem, �nite memory detection, was dealt with

in the context of decentralized detection. Decentralized de-

tection deals with detection problems where a center has to

make the decision after receiving the observations from a

set of sensors. Usually we want each sensor to transmit a

quantized version of its observation, to lower the complex-

ity or the communication requirements. If these sensors are

arranged in a tandem con�guration [11], then we have the

same problem as in �nite memory detection. For an exten-

sive overview of that �eld, see [12].

This paper is organized as follows. In the next section we

write the equations that need to be solved for the optimal

thresholds assuming time varying thresholds. We explain the

algorithms that were used to solve these equations. We then

present a much simpler algorithm that yields sub-optimal

thresholds and show that there is almost no di�erence in

performance. In section 3, we briey explain the time in-

variant problem. So far, we have been unable to �nd a sim-



ple way of obtaining the optimal thresholds. However, we

present a sub-optimal method that is close to the optimal.

We then present an algorithm that uses these thresholds in

a low power detector. We then end by giving the conclusion.

2 Time Varying Thresholds

2.1 Equations

In this paper we will use simple thresholding of the obser-

vations as our �nite memory detector. In this section we

will formulate the problem of solving for the thresholds. We

assume that we are using probability density functions that

produce a likelihood ratio that is monotone in the observa-

tion variable. Hence the problem is reduced to thresholding

the observation variable. Let us illustrate that by using a

simple example. Speci�cally, assume that under the two hy-

potheses, the observations are given by H0 :P0, H1 :P1. De-

�ne the decision variable dk as dk = d(Tk) 2 fH0; H1g. The
probability of error after any observation can now be de�ned

to be

Pk(e) = Prob:(H1) � Prob:(dk = H0jH1)

+Prob:(H0) � Prob:(dk = H1jH0): (1)

In [1], [2], the goal was to minimize the asymptotic probabil-

ity of error, namely P1(e) = limk!1 Pk(e). In this paper,

and assuming we have N observations, we want to minimize

PN (e). Assume that Tk 2 f1; 2; ::::; Mg, i.e. that we can

represent it by log
2
M bits. Therefore, at each observation

k 2 f2; 3; :::N � 1g we need to specify M � 1 thresholds for

each possible Tk�1, thus we need M(M � 1) thresholds at

each observation. Notice that at the �rst observation we

only need M � 1 thresholds, and at the last observation,

the decision observation, we need not calculate TN but we

only need M thresholds for calculating dN . Take f
(k)

l;m to be

the l-th threshold at observation k, given Tk�1 = m. De-

�ne f0;m = 1 and fM;m = �1. Hence, the terms in the

probability of error that depend on f
(k)

l;m are

(Prob:(Tk�1 = mjH0):P rob:(f
(k)

l�1;m > X(k) > f
(k)

l;mjH0)

Prob:(dN = H1jH0; Tk = l) +

Prob:(Tk�1 = mjH0):P rob:(f
(k)

l;m > X(k) > f
(k)

l+1;mjH0)

Prob:(dN = H1jH0; Tk = l+ 1)) � Prob:(H0)

+(Prob:(Tk�1 = mjH1):P rob:(f
(k)

l�1;m > X(k) > f
(k)

l;mjH1)

Prob:(dN = H0jH1; Tk = l) +

Prob:(Tk�1 = mjH1):P rob:(f
(k)

l;m > X(k) > f
(k)

l+1;mjH1)

Prob:(dN = H0jH1; Tk = l+ 1)) � Prob:(H1): (2)

We then have to di�erentiate the above equation with respect

to f
(k)

l;m, and set the result equal to zero to get an equation

for this threshold. The problem here is that all the terms

are functions of the thresholds at the other observations.

Speci�cally, let us drop the dependence on Hi,

Prob:(Tk�1 = m) =

MX

i=1

Prob:(Tk�2 = i) �

Prob:(f
(k)

m�1;i > X(k) > f
(k)

m;i); (3)

and assuming that dN is equal to H0, if the observation is

larger than the threshold,

Prob:(dN = H0; Tk = l+ 1) =

MX

i=1

Prob:(TN�1 = i) � Prob:(X(N) > f
(N)

i ); (4)

and the rest of the terms with dN are calculated similarly.

Therefore we have a large number of coupled equations and

it is impossible to solve them directly. A way to solve them

[12] would be to assume that all the thresholds are already

optimal except for those at observation k. We can then get

all the terms in the equation recursively using equations 3

and 4. We start the recursion with Prob:(T0 = i) = 1=M for

all i 2 f1; 2; :::;Mg, Prob:(Tk = l+ 1) = 1 and

Prob:(Tk = i) = 0 for all i 2 f1; 2; :::;Mg; i 6= l+ 1

Thus we can solve for the k-th observation threshold. We

then repeat that process at all the observations, and iterate

till we reach steady state or until the change in the thresholds

is small. At each new threshold computation, the probabil-

ity of error is guaranteed to decrease, and therefore we are

guaranteed to arrive to a minimum. There is no guarantee

that this method would go to the global minimum, but our

results on Gaussian variables show that it does.

2.2 Example

Let us now illustrate the above procedure by using a simple

example. Speci�cally, assume that under the two hypothe-

ses, the observations are given byH0 :s+n(k), H1 :�s+n(k).
Here, s is a known DC signal, and n(k) is a white zero-mean

Gaussian noise sequence of standard deviation �. Di�eren-

tiating (2), and setting to zero we get

A � P0(f
(k)

l;m)�B � P1(f
(k)

l;m) = 0; (5)

where,

A = Prob:(H0) � [Prob:(Tk�1 = mjH0):

(Prob:(dN = H1jH0; Tk = l)

�Prob:(dN = H1jH0; Tk = l+ 1))]; (6)

and

B = Prob:(H1) � [Prob:(Tk�1 = mjH1):

P rob:(dN = H0jH1; Tk = l)

�Prob:(dN = H0jH1; Tk = l+ 1))]: (7)

And hence, f
(k)

l;m = �2

2�s
ln A

B

We used the above algorithm, with 2 and 3 bits, using s =

:8 and � = :5. The results are compared to the optimum

detector (comparing the sum of all observations with zero )

in Fig. 1.

2.3 Simpler Optimization

Here, we explain a simpler optimization techniques that have

less computational complexity than the above method of op-

timization. It has the added advantage of having a limited

number of optimization variables independent on our sam-

ple size. Also in the case of on line optimization ( assuming

the signal value or the noise standard deviation can change

on-line ), this algorithm has much less complexity per sam-

ple time, as the current sample thresholds depends only on

the previous thresholds and is independent of future ones. In

the case of tandem decentralized detection when a center can

only get information from its previous detector, this method

of optimization becomes our only choice if we don't want



to repeat the above optimization procedure at all the detec-

tors. Assume that we are trying to calculate the thresholds

at observation k, and we only know the optimal thresholds

at all the previous observations. We apply the in�nite preci-

sion optimal detector on the M � k remaining observations.

Assume that this detector is

G(X(k + 1); X(k + 2); :::X(M))

H1

>

<

H0

: (8)

Starting with an initial , equation (2) can be written as:

(Prob:(Tk�1 = mjH0):P rob:(f
(k)

l�1;m > X(k) > f
(k)

l;mjH0)

Prob:(G > jH0; Tk = l) +

Prob:(Tk�1 = mjH0):P rob:(f
(k)

l;m > X(k) > f
(k)

l+1;mjH0)

Prob:(G > jH0; Tk = l+ 1)) � Prob:(H0)

(Prob:(Tk�1 = mjH1):P rob:(f
(k)

l�1;m > X(k) > f
(k)

l;mjH1)

Prob:(G < jH1; Tk = l) +

Prob:(Tk�1 = mjH1):P rob:(f
(k)

l;m > X(k) > f
(k)

l+1;mjH1)

Prob:(G < jH1; Tk = l + 1)) � Prob:(H1): (9)

We now iterate only on f
(k)

i;m; i 2 1; 2; :::;M � 1 and . We

then move to observation k+1 and repeat the process. Here,

we only make a single pass on all the observations, and hence

we save a lot in the computations. Another technique for

simpler optimization, which we won't discuss here, consists

of dividing all future observations into a number of groups.

This technique will give thresholds that are closer to the

optimum thresholds, but is more complex to optimize.

3 Time Invariant Thresholds

In the time varying threshold detector, and as the number of

observations increases, more memory will be needed to store

all the thresholds at di�erent observations. So, in this sec-

tion, we turn our attention to time invariant detectors. There

is no proof that the optimum time invariant �nite memory

detector is a likelihood ratio threshold device. It has only

been proven in [8] that this is the case in symmetric 1-bit

Gaussian detection problem. Even if that is not generally the

case, this will give us lower detection power, and hence in this

section we will address the problem of �nding the optimum

time varying thresholds. Let us assume that the thresholds

are the same and equal to fj;i except for the �rst observation

and the last one. Now, this is a Markov chain with the initial

state given by the row vector I whose i � th component is

Prob:(T1 = i) and the transition matrix given by A where

Aij = Prob:(fj�1;i > X(k) > fj;i). Let F be a vector whose

i � th component is Prob:(dN = H0jH1; TN�1 = i). There-

fore we can write the probability of error as I � AN�2 � F .

Optimizing the thresholds in the equation is extremely di�-

cult, and hence we have to �nd easier ways. A way would be

to calculate the time varying thresholds and then use their

average as the time invariant thresholds. We can then use

the probability of error equation to optimize the initial ob-

servation and the �nal observation thresholds alone.

4 Low Power Detection

Assume we have already calculated the time invariant thresh-

olds. These have to be stored and the observation quantized

and compared to them. Assume we have the same hypothe-

ses as in section 2.2. The optimal detector would be to sum

all the observations and compare the sum to zero. There-

fore for N observations each quantized to Q bits, we need

N �Q+ 1 one bit operations to decide between H0 and H1.

Using a 3-bit time invariant detector we need an average

number of one bit operations equal to about 44 ( compared

to 161 ) at 10 observations and 640 ( compared to 1601 )

at 100 observations. We can reduce this even more by mak-

ing the following observation: no matter what the previous

comparison results were, if the �nal observation was higher

than the maximum of all the �nal observation thresholds our

decision would only depend on that observation. The same

applies if the �nal observation is lower than the minimum

threshold. If that is not the case, we can look at the ob-

servation previous to the �nal and we might be able to stop

at it disregarding all the previous observations. Hence and

since all the observations are identically distributed we can

apply the following algorithm:

1. Compare the �rst observation with the M thresholds

f
(N)

i , i 2 f1; 2; :::Mg

2. If the observation is larger than f
(N)

1
or smaller than

f
(N)

M make the decision. Else if it is between f
(N)

i and

f
(N)

i+1 , let TN = i

3. For j=N to 3

(a) Compare observation N � j + 2 to fTj ;i, i 2

f1; 2; :::Mg

(b) If the observation is larger than fTj ;1 or smaller

than fTj ;M make the decision and exit

Else if it is between fTj ;i and fTj ;i+1, let Tj�1 = i

4. Compare observation N to f
(1)

T2
and decide.

Using this algorithm we only need 245 one bit operations for

a 3-bit time invariant detector for 100 observations.

4.1 Simulation Results

For the example in 2.2, we used the simple optimization tech-

nique to derive the thresholds. Fig. 2 shows a comparison

between the probability of error performance between the

thresholds obtained using this technique and the optimal

thresholds. It is clear that there is no loss of performance

using this simpler optimization technique. We also gener-

ated the time invariant threshold using our algorithm. An

example is shown in Fig. 3. On the same �gure a 2-bit de-

tector that was derived using brute search is also shown. It

is clear that our technique performs close to the optimum

time invariant likelihood ratio �nite memory detector.

5 Conclusion

We have presented some results in �nite memory detection

after proposing it being used as a low power detector. Specif-

ically, we presented simple optimization techniques for time

variant and time invariant thresholds. We also presented an

algorithm that could lower the complexity even more.
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Figure 1: Optimal Vs. Finite Memory Detector
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Figure 2: Comparing Optimization Techniques
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Figure 3: Time Invariant Detector


