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ABSTRACT

The aim of this paper is to show how one can use tools

from mathematical morphology in a systematic man-

ner for the development of signal and image pyramids

and wavelets. The abstract framework is illustrated by

means of simple examples.

1 Introduction

It is an interesting phenomenon that change of resolu-

tion (or scale) may give rise to the creation, annihilation,

and merging of features. It implies that the perception

of a scene at various resolutions may give rise to di�er-

ent outcomes. This has led to an important paradigm

in image processing and computer vision: for a com-

prehensive understanding of a scene, one has to analyse

it at a broad range of resolution levels. This results

in so-called multiresolution techniques, of which various

examples can be found in the literature, e.g., quadtrees,

pyramids, wavelets, fractal methods, scale-spaces, etc.

Each of these techniques has its own merits and limita-

tions.

The discovery of wavelets has greatly extended the

utilisation of multiresolution approaches in signal pro-

cessing applications [2, 8, 10]. Its use in image analysis,

however, is somewhat limited by the fact that it hinges

on the linearity assumption: the underlying spaces are

linear spaces and the operations involved are linear (av-

eraging, subtraction). Mathematical morphology [3, 6]

is complementary to the linear approach in the sense

that it considers images as geometric objects rather than

as elements of a linear (Hilbert) space. The central

idea of mathematical morphology is to examine the ge-

ometric structure of an image by probing it with small

patterns, called \structuring elements," at various loca-

tions. One can extract useful shape information from

the image by varying the size and shape of the structur-

ing elements.

Many existing morphological tools, such as granu-

lometries, skeletons, and alternating sequential �lters,

are essentially multiresolution techniques. Thus, one

may wonder: What are the relationships between the

existing linear (wavelets) and nonlinear (morphological)

multiresolution approaches? The goal of this paper is to

deal with such questions.

2 Linear pyramid transforms

In the earliest multiresolution approaches to signal and

image processing, the most popular way was to ob-

tain a coarse level signal by subsampling a �ne res-

olution signal, after linear smoothing, in order to re-

move high frequencies. A detail pyramid can then be

derived by subtracting from each level an interpolated

version of the next coarser level; the best-known ex-

ample is the Laplacian pyramid [1]. From a frequency

point of view, the resulting di�erence signals (known as

detail signals) form a signal decomposition in terms of

bandpass-�ltered copies of the original signal. Moreover,

there is neurophysiological evidence that the human vi-

sual system indeed uses a similar kind of decomposition.

This tool has been one of the most popular multireso-

lution schemes used in image processing and computer

vision [5].

The development of wavelet theory during the past

ten years [2, 8, 10] has resulted in signal and image de-

composition schemes which avoid the redundancy inher-

ent to the older schemes, such as the Laplacian pyramid,

where the �lter coe�cients are chosen more or less ar-

bitrarily.

3 Towards an axiomatic approach

3.1 Motivation

The linear pyramid scheme mentioned in the previous

section however leaves a lot to be desired, obviously due

to aliasing and use of non-ideal �lters. In addition, a

linear �ltering approach may not be theoretically justi-

�ed; in particular, the operators used for generating the

various levels in a multiresolution pyramid must depend

crucially on the application.

We seek to develop a general multiresolution scheme

that represents a signal, or image, using a sequence of

successively reduced volume signals, applying �xed rules

that map one level to the next. In such a scheme, a level

is uniquely determined by the level below it. Such an

approach contains the following ingredients:



� No assumptions are made on the underlying sig-

nal/image space(s). It may be a linear space

(Gaussian/Laplacian pyramid, wavelets), it may be

a complete lattice (mathematical morphology), or

any other set.

� The scheme is constituted by operators between dif-

ferent spaces (the levels of the pyramid). These op-

erators are only required to satisfy some elementary

properties and are decomposed into analysis oper-

ators, representing an upward step, and synthesis

operators, representing a downward step.

In this paper, we only give a brief overview of some of

our ideas; we refer to our future publications for a more

comprehensive account.

3.2 Pyramid transform

Every level j 2 I of the pyramid corresponds to a do-

main Vj of signals. No particular assumption on Vj is

made at this point; it is not necessarily true that Vj is a

linear space, or that Vj+1 � Vj . Multiresolution signal

analysis consists of decomposing a signal in the direction

of increasing j (bottom-up process). This task is accom-

plished by means of analysis operators  
"

j : Vj ! Vj+1;

such operators reduce information. On the other hand,

multiresolution signal synthesis (top-down process) pro-

ceeds in the direction of decreasing j, by means of syn-

thesis operators  
#

j : Vj+1 ! Vj . The crucial assumption

to be made is

 
"

j 
#

j = id on Vj+1;

where id is the identity operator. We refer to this iden-

tity as the pyramid condition.

Although, as a direct consequence of this condition,

the analysis operator  
"

j is the left inverse of the synthe-

sis operator  
#

j , it is not in general true that it is also

the right inverse:  ̂j(x) =  
#

j 
"

j (x) is only a \coarse

approximation" of x. Therefore, the analysis step can-

not be used for signal representation; there is loss of

information in the analysis step. This is not a problem

however. In fact, this is in agreement with the inher-

ent property of multiresolution signal decomposition of

reducing information in the direction of increasing j.

Analysis followed by synthesis of a signal x 2 Vj yields

an approximation x0 =  ̂j(x) 2 V 0
j . We assume that

there exists a subtraction operator (x; x0) 7! x _�x0 map-

ping Vj�V
0
j into a set Yj . Furthermore, we assume that

there exists an addition operator (x0; y) 7! x _+ y map-

ping V 0
j � Yj into Vj . The detail signal y = x _�  ̂j(x)

contains the \high resolution" or \detail" information

about x which is not present in x0. It is crucial that x

can be recovered from its coarse approximation x0 and

the detail signal y. Towards this goal we introduce the

following assumption:

x0 _+ (x _� x0) = x if x 2 Vj and x0 =  ̂j(x)

This leads to the following recursive signal analysis

scheme:

x = x0 ! (x1; y0)! � � � ! (xj+1; yj ; yj�1; : : : ; y0)! � � �

where 8<
:
x0 = x 2 V0
xj+1 =  

"

j (xj) 2 Vj+1; j � 0

yj = xj _�  ̂j(xj) 2 Yj

We refer to this scheme as the pyramid analysis scheme.

The inverse scheme, called pyramid synthesis scheme,

goes as follows:

xj =  
#

j (xj+1) _+ yj

In most applications, the subtraction and addition op-

erators are the usual operations on IR, but this is not a

prerequisite.

3.3 Some examples

The axiomatic pyramid approach described above en-

compasses several existing techniques.

Example (Burt-Adelson pyramid)

Consider the case when both the signal spaces and

the operators are linear. Assume that for every j �
0, Vj = `2(Z), the space of real-valued sequences

(: : : ; x(�1); x(0); x(1); : : :) with
P1

n=�1 jx(n)j2 < 1.

Assume, furthermore, that at every level j the same

analysis and synthesis operator  ";  # are used, namely,

 "(x)(n) =
1

8

�
�x(2n� 2) + 2x(2n� 1) +

+6x(2n) + 2x(2n+ 1)� x(2n+ 2)
�

and �
 #(x)(2n) = x(n)

 #(x)(2n+ 1) = 1

2
(x(n) + x(n+ 1))

A straightforward computation shows that  " # = id,

i.e., the pyramid condition is satis�ed. The resulting

pyramid scheme is also known in the literature as the

Laplacian pyramid [1]. 2

The pyramid scheme to be discussed next has been

proposed earlier by Heijmans and Toet in a paper on

morphological sampling [4].

Example (Morphological pyramid)

Consider the complete lattice L = Fun(Z2; IR) compris-

ing all functions mapping Z2 into the extended reals

IR = IR [ f�1;1g. Let A � Z
2 be a structuring ele-

ment, and de�ne A[n] = fk 2 A j k � n is eveng. Note
that m 2 Z2 is called even if both its coordinates are

even integers. De�ne the analysis and synthesis opera-

tor in the following way:

 "(x)(n) =
^
k2A

x(2n+ k)

 #(x)(n) =
_

k2A[n]

x(
n� k

2
)



where _, ^ denote maximum and minimum, respec-

tively. This pair of morphological operators forms a

so-called adjunction [3], which means that  #(x0) � x

if and only if x0 �  "(x) (pointwise) for every pair

x; x0 2 L. It satis�es the pyramid condition if and only

if there exists an n 2 Z2 for which A[n] contains exactly
one element.

We give an explicit example. Let A = f(0; 0), (1; 0),
(0; 1); (1; 1)g. It is evident that A[n] = fng for n 2 A,

hence the previous condition is satis�ed. The operators

 " and  # are given by (writing (m;n) instead of n):

 "(x)(m;n) =
^
fx(m;n); x(m+ 1; n);

x(m;n+ 1); x(m+ 1; n+ 1)g

and

 #(x)(2m; 2n) =  #(x)(2m+ 1; 2n)

=  #(x)(2m; 2n+ 1)

=  #(x)(2m+ 1; 2n+ 1)

= x(m;n)

for (m;n) 2 Z2. 2

Some other morphological concepts that can be con-

veniently described in terms of our axiomatic scheme

are:

� Skeleton: The (morphological) skeleton representa-

tion [7] that can be expressed in terms of morpho-

logical operations (dilation, erosion, opening, clos-

ing) is a special case of the pyramid transform; here

the underlying signal spaces are complete lattices,

and the analysis and synthesis operators are consti-

tuted by adjunctions [3].

� Granulometries: Granulometries and size distribu-

tions form one of the most practical concepts in

mathematical morphology [6]. They �t, in a very

natural way, into our general scheme.

A signal representation obtained by means of a pyra-

mid scheme (coarsest signal along with the detail signals

yj) is overcomplete, in the sense that it produces more

samples than the original �nest resolution signal. This

is a direct consequence of the fact that the detail signal

yj lives at level j.

4 Wavelet decomposition

4.1 Axiomatics

Suppose that we are able to �nd a second analysis

operator !
"

j mapping Vj into some space Wj+1 (with

smaller cardinality than Vj) and a synthesis operator

!
#

j :Wj+1 ! Yj such that

 
#

j 
"

j (x) _+ !
#

j!
"

j (x) = x; for x 2 Vj :

In this case, !
#

j!
"

j (x) replaces the detail signal x _� x0 =

x _�  
#

j 
"

j (x). Here _+ is addition from V 0
j � Yj into Vj ;

however, there does not need to exist a subtraction.

Notice that the detail signal x _�  
#

j 
"

j (x) at level j

can now be obtained from the detail signal !"j (x), that

lives at level j + 1, by means of the second synthesis

operator !
#

j . A signal decomposition scheme obtained

by means of this modi�cation is complete, in the sense

that it (approximately) produces the same number of

samples as the original �nest resolution signal. This is

a direct consequence of the fact that the detail signal yj

can be now calculated from the detail signal !"j (xj) that

lives at level j + 1, as opposed to level j in the case of

the pyramid transform.

The analysis and synthesis operators  
"

j , !
"

j ,  
#

j , !
#

j ,

have to satisfy conditions which are very similar in na-

ture to the biorthogonality conditions known from the

theory of wavelets (note, however, that these conditions

are formulated in operator terms only, and do not re-

quire any sort of linearity assumption or inner product).

In the sequel, we refer to !
"

j and !
#

j as the highpass anal-

ysis and synthesis operators.

In this case, analysis may proceed recursively in the

direction of increasing j by means of:(
xj+1 =  

"

j (xj)

wj+1 = !
"

j (xj)

Synthesis proceeds recursively in the direction of de-

creasing j by means of:

xj =  
#

j (xj+1) _+ !
#

j (wj+1)

We assume that the operators satisfy the following con-

ditions.

(1)  
#

j 
"

j (x) _+ !
#

j!
"

j (x) = x, for x 2 Vj .

(2)  
"

j ( 
#

j (x) _+ !
#

j (w)) = x, for x 2 Vj+1, w 2Wj+1.

(3) !
"

j ( 
#

j (x) _+ !
#

j (w)) = w, for x 2 Vj+1, w 2Wj+1.

The decomposition of a signal x0 2 V0 into the collection
w1; w2; : : : ; wN ; xN , where N is the �nal possible step is

called the wavelet transform.

4.2 A simple example

Obviously, existing linear wavelets [2] or �lter banks [8,

10] �t into our abstract wavelet scheme. But our frame-

work also encompasses several nonlinear examples. Here

we present a very simple 1-dimensional example, which

can be considered as the morphological analogue of the

Haar wavelet.

Example (Morphological Haar wavelet)

Let Vj = Fun(Z; IR), for every j, and use the same anal-

ysis operator  " and synthesis operator  # at every level

j, namely:

 "(x)(n) = x(2n) ^ x(2n+ 1)
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Figure 1: Signal analysis by the morphological Haar

wavelet. The grey boxes contain the detail signals.

!"(x)(n) = x(2n)� x(2n+ 1)

 #(x)(2n) =  #(x)(2n+ 1) = x(n)

!#(w)(2n) = w(n) _ 0

!#(w)(2n+ 1) = (�w(n)) _ 0

It is easy to verify that the aforementioned conditions

(1){(3) are satis�ed. The analysis scheme is illustrated

in Fig. 1, the synthesis scheme in Fig. 2.

5 Conclusions and perspectives

We believe that the multiresolution schemes introduced

in this paper may be of great interest in image process-

ing applications, in particular at those instances where

shape plays a role, e.g., in image coding and compres-

sion, texture analysis, and image fusion. The under-

lying mathematical theory, however, is much harder

than in the linear case: the computational framework of

Fourier or z-transform techniques is no longer at our dis-

posal. However, the lifting scheme, recently developed

by Sweldens [9], can be used to construct interesting

morphological wavelet transforms.
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