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ABSTRACT

The adaptive blind source separation problem has been
traditionally dealt with the use of nonlinear neural mod-
els implementing higher-order statistical methods. In
this paper we show that second order Cross-Coupled
Hebbian rule used for Asymmetric Principal Component
Analysis (APCA) is capable of blindly and adaptively
separating uncorrelated sources. Our method enjoys
the following advantages over similar higher-order mod-
els such as those performing Independent Component
Analysis (ICA): (a) the strong independence assump-
tion about the source signals is reduced to the weaker
uncorrelation assumption, (b) there is no constraint on
the sources pdf's, i.e. we remove the assumption that
at most one signal is Gaussian, and (c) the higher or-
der statistical optimization methods are replaced with
second order methods with no local minima, and(d) the
kurtosis of the sources becomes irrelevant. Simulation
experiments shows that the model successfully separates
source images with kurtoses of di�erent signs.

1 Introduction

During the past decade, the relationship between neural
networks implementing linear input-output mappings
and standard second-order statistical methods, such as
Principal Component Analysis (PCA), has been known
and studied extensively [7]. More recently, there is an
increased interest on nonlinear neural models which are
related to higher-order statistical techniques and are ap-
plied in blind inverse problems such as Blind deconvo-

lution [9], Blind source separation [11], and Independent

Component Analysis (ICA) [5]. These problems have
important applications in the areas of digital communi-
cations, and signal processing (e.g. in the processing of
biological signals such as ECG, EEG and MEG).

The common framework behind all these problems in-
volves the recovery of hidden stochastic signals (called
sources) given their observed transformation with some
unknown linear operator. For the sake of clarity let us
focus on the Blind Source Separation (BSS) problem,
although a similar mathematical development holds for
the blind deconvolution problem as well. If one uses

methods based on higher-order statistics (HOS) one as-
sumes that the source samples are independent random
variables and that their pdf's are not Gaussian except
for perhaps only one source signal. The problem solu-
tion using this approach is based on the extremization of
certain indices called contrast functions [5] under certain
second order constraints. Typically, the contrast func-
tion involves the fourth-order cumulant (the kurtosis)
of the reconstructed signals whereas the second order
constraint involves the covariance of these signals [5].

Recently, it was found that the BSS problem can be
attacked using second-order methods as well (see for ex-
ample, [2]). The advantages of this approach are many-
fold: (a) the source samples may come simply from
uncorrelated variables instead of independent ones, (b)
there is no constraint on the signal Gaussianity, and (c)
the optimization method used is the well-known eigen-
value decomposition and not some nonlinear optimiza-
tion technique plagued by local minima and / or slow
convergence.

Many neural BSS methods have been proposed in the
past. The model of Jutten & Herault [11] involves lin-
ear units with feed-back connections. Partly, due to its
heuristic origin the model has poor performance and it
fails to separate more than two sources. Other models
include the Nonlinear and Robust PCA models of Oja
and co-workers (for a good review see [12]), the Equiv-
ariant Adaptive algorithm [3], the entropy maximiza-
tion model [1], the �xed-point algorithm [10], the robust
adaptive algorithm [4], the exploratory projection pur-
suit (EPP) network [8] etc. The common characteristic
of these methods is the fact that they adaptively extrem-
ize some higher-order statistical index, and as a result
they inherit the assumptions and drawbacks of HOS-
based methods. For example, these models assume that
the data samples come from independent random vari-
ables, that at most one source is Gaussian, and most of
the models assume that the source signal kurtoses are
of the same sign (usually negative).

The use of second-order time-delayed neural models
for blind source separation was proposed by Molgedey
and Schuster [13]. Their model incorporates linear units



and it concurrently extracts all independent sources as-
suming prior knowledge of their number. However, the
model is recurrent so that the input-output mapping
is given through a matrix inversion operation, and the
learning algorithm is given in the form of a di�erential
equation which can not be easily transformed into the
form of a discrete-time updating equation.
In this paper we show how the cross-coupled Hebbian

learning rule originally proposed for Asymmetric Princi-
pal Component Analysis (APCA) can be used for solv-
ing the blind source separation problem. The rule can
extract one source at a time until there is no more vari-
ance left in the signal. In particular, Section 2 reviews
the use of second order statistics for the blind separa-
tion of uncorrelated sources based on similar work pro-
posed for digital communications problems. After using
a simple neural orthogonalization procedure in Section
3, Section 4 describes the Asymmetric PCA problem
and the neural algorithm used for solving it. In Section
5 we combine the above neural models into an adaptive
algorithm for blind source separation. Finally Section 6
contains results from simulation experiments which used
our neural method for the e�cient separation of image
mixtures with sources of di�erent kurtosis signs.

2 Second-order blind separation of sources

Consider the mixing of n unknown continuous-time sig-
nals si(k), i = 1; : : : ; n, through an equally unknown
linear mixing operator A

x(k) = [x1(k) � � �xn(k)]
T = As(k): (1)

The number of observation signals is equal to the
number of sources. Our assumptions regarding the
source signals and the mixing matrix are summarized
below:

A.1 The sources are at least wide-sense stationary and
they are pairwise statistically orthogonal, i.e. if i 6=
j then Efsi(k1)sj(k2)g = 0, for all k1, k2.

A.2 rank(A) = n.

The recovery of the sources si(k) when only the ob-
servation process x(k) is available is called the Blind

Source Separation (BSS) problem. The BSS problem
has inherent indeterminacies due to the lack of knowl-
edge about the structure ofA: it is impossible to recover
the original amplitude and ordering of the sources.

In this paper we shall use second order statistics as-
suming that the source signals have colored spectra. In
particular, let us de�ne the source autocorrelation ma-
trix for some time-delay l as

Rs(l) = Efs(k)s(k + l)T g:

The basic assumptions A.1 and A.2 are complemented
with the following

A.3 The matrices Rs(0) and Rs(l), for some l � 1,
are non-zero. Due to the pairwise orthogonality
of the sources, it follows that Rs(0) and Rs(l) are
diagonal matrices, whose diagonal entries can be
written as: [Rs(0)]ii = Es

2
i
(k) 6= 0, [Rs(l)]ii =

Esi(k)si(k + l) 6= 0. Furthermore, we shall assume
that Rs(l) has non-repeated diagonal elements.

A.4 Due to the inherent amplitude indeterminacy of
the blind source separation problem we may as-
sume, without loss of generality, that the source
signals are normalized to unit variance Rs(0) = I:

Using the assumptions A.1 to A.4 a second-order BSS
algorithm is described by the following four steps (based
on the work of Belouchrani e.a. [2]):

Step 1: Eigenvalue decomposition.

Rx(0) = U0�0U
T

0 (2)

Step 2: Orthogonalization. The observation data
x(k) are orthogonalized using a linear transform

z(k) = Cx(k); where C � U0�
�1=2

0
UT
0 =

Rx(0)
�1=2. This transformation creates a new ef-

fective mixing matrix ~A = CA, whose rows are or-
thonormal vectors since Rz(0) = Efz(k)z(k)T g =
~ARs(0)~A

T = ~A~AT = I.

Step 3: Eigenvalue Decomposition. Choose some
l � 1 such that Rs(l) 6= 0. We have

Rz(l) = ~ARs(l)~A
T
; (3)

whereRs(l) is diagonal, and ~A is orthogonal. It fol-
lows that (a) Eq. (3) is an eigenvalue decomposition
of the matrix Rz(l) and (b) the matrix is symmet-
ric. By the assumption that the diagonal entries
of Rs(l) are distinct, the eigenvalue decomposition
is unique up to a permutation of the eigenvectors.
Therefore, if

Rz(l) = U�UT (4)

is an eigenvalue decomposition of Rz(l) then we
have a perfect estimate of ~A by Â = U (up to a
permutation of its columns which corresponds to a
permutation of the source signal ordering).

Step 4: Source Estimation. Since Â is orthogonal,
the source estimates are ŝ(k) = ÂT z(k).

Notice that if we have perfect estimates of Rx(0) and
Rx(l) the reconstruction is also perfect {within the in-
herent problem limitations.

3 Adaptive orthogonalization.

The �rst step of our adaptive second order BSS algo-
rithm is the orthogonalization of the observed mixtures.
To that end we may use a simple linear feed-forward



network as proposed by Girolami and Fyfe [8]. If we let
zi =

P
j
cijxj be the network outputs, then the orthog-

onalizing learning rule is

Ck+1 = Ck + �k(I� z(k)z(k)
T ) (5)

The step-size parameter �k is set to decrease gradually
to zero. The rule (5) can be shown to converge to the
symmetric, inverse square root of the data covariance
matrix: C1 = Rx(0)

�1=2.

4 Asymmetric principal component analysis

(APCA).

Asymmetric Principal Component Analysis (APCA) [7]
is an extension of PCA involving two stochastic pro-
cesses. Ordinary PCA can be viewed in two equivalent
ways: (a) as a method which maximizes the signal pro-
jection variance, or (b) as a method which minimizes the
approximation error. Therefore, there are two indepen-
dent ways in which to extend PCA when we have two
vector stochastic signals, x and y: one way is along the
covariance direction and one along the approximation
direction.
The relevant extension here is the one according to the

variance criterion which leads to the Cross-correlation

APCA problem [7]. The problem amounts to maximiz-
ing the cross-correlation index between the two random
vectors x 2 IRn, y 2 IRm,

J(U;V) = E

n
tr[(Ux)(Vy)T ]

o
= tr(URxyV

T ); (6)

under the constraint UUT = VVT = I, where U 2
IRp�n, V 2 IRp�m, p < minfm;ng. The solution to
the problem is the SVD of the cross-correlation matrix
Rxy � EfxyT g.
The neural implementation of cross-correlation

APCA has been proposed in conjunction with the cross-
coupled Hebbian rule [6]. Let a = uTx, b = vTy, be
the output activations of two linear neurons. The cross-
coupled Hebbian rule is described by the recursive equa-
tions

�uk = �k[x(k)� a(k)uk]b(k) (7)

�vk = �k[y(k)� b(k)vk]a(k) (8)

The rule has been shown to converge to the principal
singular vectors of Rxy. The second, third, etc, compo-
nents can be extracted using the Deation Transforma-

tion:

x(k)0  [I� uuT ]x(k) (9)

y(k)0  [I� vvT ]y(k) (10)

where u, v are the latest extracted unit-length singular
vectors. It can be shown that the singular value de-
composition of Rx0y0 for the new signals x(k)0, y(k)0, is
the same as the SVD of the original matrix Rxy, except

for the singular value corresponding to u, v, which has
become equal to zero. Therefore, after extracting the
principal singular vectors, if we perform the deation
transformation on the data and we run the algorithm
(7), (8), again we shall obtain the second principal sin-
gular vectors. In that way we can recursively extract
all the singular vectors of the original covariance matrix
Rxy.

5 Neural, second-order blind source separation

Putting all the pieces together we describe in this sec-
tion the complete adaptive second-order BSS algorithm.
In the beginning the data are orthogonalized using the
adaptive rule (5) obtaining the vector sequence z(k).
The neural cross-correlation APCA model in Section 4
can be applied directly for computing the SVD of the
matrix Rz(l) = Ez(k)z(k + l)T by setting x(k) = z(k)
and y(k) = z(k + l) in Equations (7) and (8). So,

�uk = �k[z(k)� a(k)uk]b(k) (11)

�vk = �k[z(k + l)� b(k)vk]a(k) (12)

a(k) = uTk z(k) (13)

b(k) = vT
k
z(k + l) (14)

Note that Rz(l) is (ideally) symmetric so the left
and right singular vectors are identical up to their sign.
Therefore, for the convergence points of Algorithm (11),
(12) we must have u1 = �v1. In practice, the previ-
ous equality does not hold perfectly and we may prefer
to choose either vector u1 or v1 as the �nal solution
(or the average of the two).
After computing each pair of singular vectors, we de-

ate the data using one of the following two transforms
x0(k) = [I � uuT ]x(k) or x0(k) = [I � vvT ]x(k). Then
we run the algorithm (11), (12) again on the new data
obtaining recursively the third, fourth, etc, singular vec-
tors.

6 Simulation experiments

We tested the method using four source images treated
as signals by stacking the columns on top of each other
into a long data vector. Both the original images and
their linear mixtures are shown in Figure 1, whereas the
unmixing performed by the neural algorithm is shown
in Figure 2. We note that image sources s1, s2, and
s3 have negative kurtoses, while image s4 has positive
kurtosis. As a result, most higher order methods would
not work in this case since they assume that all sources
have kurtoses of the same sign.

7 Conclusion

In this paper we presented a neural second-order ap-
proach for blindly unmixing uncorrelated signals. Our
method is a combination of an adaptive orthogonaliza-
tion model and the cross-coupled Hebbian model for
Asymmetric PCA. The model does not use any ad-hoc



nonlinear unit activation functions, the sources may be
simply uncorrelated and not necessarily independent,
while we remove all constraints on the signal pdf's. Fi-
nally, the kurtosis of the mixed signals is irrelevant here
as proven by simulation experiments which successfully
separate source images with kurtoses of di�erent signs.
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Figure 1: The source images (top 2 rows) and their lin-
ear mixtures (bottom 2 rows). Sources s1, s2, s3 have
negative kurtoses, while s4 has positive kurtosis. As a
result, most higher order neural models are not applica-
ble in this case.

y1 �y2

y3 �y4

Figure 2: The unmixing results obtained by the neural
algorithm.


