
NEURAL NETWORKS WITH HYBRID

MORPHOLOGICAL/RANK/LINEAR NODES

AND THEIR APPLICATION TO

HANDWRITTEN CHARACTER RECOGNITION

L�ucio F. C. Pessoa(1) and Petros Maragos(1)&(2)

(1) Georgia Institute of Technology, Atlanta, GA 30332 U.S.A.
(2) Institute for Language and Speech Processing, Athens , Greece

[lpessoa,maragos]@ee.gatech.edu

ABSTRACT

We propose a general class of multilayer feed-forward
neural networks where the combination of inputs in ev-
ery node is formed by hybrid linear and nonlinear (of
the morphological/rank type) operations. For its de-
sign we formulate a methodology using ideas from the
back-propagation algorithm and robust techniques to
circumvent the non-di�erentiability of rank functions.
Experimental results in a problem of handwritten char-
acter recognition are described and illustrate some of
the properties of this new type of nonlinear systems.

1 INTRODUCTION

Multilayer feed-forward neural networks, or simply neu-
ral networks (NNs), represent an important class of non-
linear systems widely used in problems of signal/image
processing and pattern recognition. Their applica-
tions in signal/image processing usually employ net-
works with a single output, which are sometimes called
NN-�lters. Furthermore, adaptive �lters and NNs are
closely related, so that their adaptation/training can be
studied under the same framework [2]. In this sense, the
design of a NN-�lter corresponds to the training process
of its embedded NN. The usefulness of NNs can be ef-
�ciently investigated due to the existence of the back-
propagation algorithm [5], which represents a general-
ization of the LMS algorithm. The perceptron, i.e., a
linear combiner followed by a nonlinearity of the logistic
type, is the standard node structure used in NNs. How-
ever, it has been observed that logic operations, which
are not well modeled by perceptrons, can be generated
by some internal interactions in a neuron [7]. For the
sake of a better representation of these internal prop-
erties, a possible improvement to this basic model is
presented in this paper 1. We propose the MRL-NNs,
a general class of NNs where the combination of inputs
in every node is formed by hybrid linear and nonlin-
ear (of the morphological/rank type) operations. The

1This work was partially supported by the US National Science

Foundation under grant MIP{94-21677, and by CNPq (Conselho

Nacional de Desenvolvimento Cient���co e Tecnol�ogico), Bras��lia,

Brazil, through a Doctoral Fellowship under grant 200.846/92-2.

fundamental processing unit of this class of systems is
the MRL-�lter [3], which is a linear combination be-
tween a morphological/rank �lter and a linear FIR �l-
ter. The MRL-NNs have the unifying property that the
characteristics of both multilayer perceptrons (MLPs)
and morphological/rank neural networks (MRNNs) [4]
are observed in the same system. An important spe-
cial case of MRNNs is the class of min-max classi�ers
[8], which can provide classi�cation results comparable
to MLPs, but with faster training processes. Next, we
formulate a simple and systematic training procedure
using ideas from the back-propagation algorithm and ro-
bust techniques to circumvent the non-di�erentiability
of rank functions. Our approach to train the morpho-
logical/rank nodes is a theoretically and numerically im-
proved version of the method proposed by Salembier [6]
to design morphological/rank �lters. Finally, we apply
the proposed design methodology in a problem of hand-
written character recognition, and provide some exper-
imental evidences showing that not only the MRL-NNs
can generate similar or better results when compared
with the classical MLPs, but also they usually require
smaller processing times for training.

2 THE MRL-NNs

In general terms, a (multilayer feed-forward) NN is a
layered system composed by similar nodes, with some
of them non-observable (hidden), where the node in-
puts in a given layer depend only on the node outputs
from the preceding layer. Every node performs a generic
composite operation, where an input to the node is �rst
processed by some function h(� ; �) of the input and in-
ternal weights, and then transformed by an activation
function f(�). The node structure is de�ned by the func-
tion h. In the case of MLPs, h is a linear combination.
The activation function f is usually employed for rescal-
ing purposes. A general NN is formally de�ned by the
following set of recursive equations.

y(l) � F (z(l)) = (f(z
(l)

1); f(z
(l)

2); � � � ; f(z
(l)

Nl

)) ;
l = 1; 2; � � � ; L ;

z
(l)
n � h(y(l�1); w

(l)
n) ; n = 1; 2; � � � ; Nl ;

(1)

where l is the layer number, and Nl is the number of

nodes in layer l. The weight vectors w
(l)
n represent the

tuning parameters in the system. Besides this, the input
and output of the system are

y(0) = x = (x1; x2; � � � ; xN0
) (input)

y(L) = y = (y1; y2; � � � ; yNL
) (output)

(2)

The MRL-NN is the system de�ned by (1) and (2)
such that

z
(l)
n � �

(l)
n �

(l)
n + (1� �

(l)
n)�

(l)
n

�
(l)
n = R

r
(l)
n

(y(l�1) + a
(l)
n)

�
(l)
n = y(l�1) � (b(l)

n
)0 + �

(l)
n

(3)

where �
(l)
n ; �

(l)
n 2 IR; a

(l)
n ; b(l)

n
2 IR

N
l�1 ; and `0' denotes

transposition.
Rr(t) is the r-th rank function of the vector t 2

IR
n. It is evaluated by sorting the components of

t = (t1; t2; � � � ; tn) in decreasing order, t(1) � t(2) �
� � � � t(n), and picking the r-th element of the sorted
list, i.e., Rr(t) = t(r), r = 1; 2; � � � ; n.
Observe from (1) and (3) that the underlying function

h is an MRL-�lter [3] shifted by a threshold (1��
(l)
n)�

(l)
n .

The variables �
(l)
n are important when �

(l)
n = 0. For ev-

ery MRL-�lter, the vector b(l)
n

corresponds to the coef-

�cients of a linear FIR �lter, and the vector a
(l)
n repre-

sents the coe�cients of a morphological/rank �lter. The

variables r
(l)
n and �

(l)
n are the rank and the mixing pa-

rameters, respectively. The resulting weight vector for
every node is then de�ned by

w(l)
n
� (a(l)

n
; �(l)

n
; b(l)

n
; � (l)

n
; �(l)

n
) ; (4)

where we use a real variable �
(l)
n instead of an inte-

ger rank variable r
(l)
n because we will need to evaluate

derivatives during the design of MRL-NNs. The relation

between �
(l)
n and z

(l)
n will be de�ned later via a di�eren-

tial equation, and r
(l)
n is obtained from �

(l)
n using 2

r(l)
n
�

$
Nl�1 �

Nl�1 � 1

1 + exp(��
(l)
n)

+ 0:5

%
: (5)

Two important special cases of MRL-NNs are ob-
tained when f is the identity, called MRL-NN of type I

(e.g., MRNN: �
(l)
n = 1 8n; l), and when f is a nonlinear-

ity of the logistic type, called MRL-NN of type II (e.g.,

MLP: �
(l)
n = 0 8n; l).

3 ADAPTIVE DESIGN

Based on the LMS criterion and using ideas from the
back-propagation algorithm, we propose a steepest de-
scent method to optimally design general NNs, and then

2b�c denotes the usual truncation operation, so that b�+ 0:5c
is the usual rounding operation.

apply it to MRL-NNs. The design goal is to achieve a set

of parameters w
(l)
n , n = 1; 2; � � � ; Nl, l = 1; 2; � � � ; L, such

that some cost function is minimized using a supervised
procedure. Consider the training set

f(x(k); d(k)) ; k = 0; 1; � � � ;K � 1g ; (6)

where d(k) is the desired system output to the train-
ing sample x(k). From (6) we generate the training se-
quence 3

(x([k] mod K
); d([k] mod K

)) ; k 2 ZZ ; (7)

by making a periodic extension of (6). Every period
of (7) is usually called an epoch. A general supervised
training algorithm is of the form

w(l)
n
(i+ 1) = w(l)

n
(i) + � v(l)

n
(i) ; � > 0 ;

n = 1; 2; � � � ; Nl ; l = 1; 2; � � � ; L ;
(8)

where the positive constant � controls the tradeo� be-

tween stability and speed of convergence, v
(l)
n = �rJ ,

and J is some cost function to be minimized. Let us
de�ne the error signal

e(k) = (e1(k); e2(k); � � � ; eNL
(k)) �

d([k] mod K
)� y(k) ;

(9)

and the cost function

J(i) �
1

M

iX
k=i�M+1

�(k) ; 1 �M � K ; (10)

where

�(k) �

NLX
n=1

e2n(k) : (11)

Based on the steepest descent algorithm, it follows from
(8) and (10) that

v(l)
n
(i) =

1

M

iX
k=i�M+1

u(l)
n
(k) ; (12)

where

u(l)
n
(k) = �

@�(k)

@w
(l)
n

: (13)

If we de�ne the matrices W (l), V (l) and U (l) by

W (l) �

0
BBBB@

w
(l)

1

w
(l)

2

...

w
(l)

Nl

1
CCCCA ;

V (l) �

0
BBBB@

v
(l)

1

v
(l)

2

...

v
(l)

Nl

1
CCCCA ; U (l) �

0
BBBB@

u
(l)

1

u
(l)

2

...

u
(l)

Nl

1
CCCCA ;

(14)

3[k] mod K � k �K bk=Kc denotes the index k modulo K.

then the algorithm (8) can be written as

W (l)(i+ 1) =W (l)(i) + � V (l)(i) ;

V (l)(i) =
1

M

iX
k=i�M+1

U (l)(k) ;

l = 1; 2; � � � ; L

(15)

In this way, using the chain rule to evaluate U (l)(k), it
can be shown that

U (l)(k) = 2 diag(�(l)(k)) � �(l)(k) ; (16)

where 4

�(l)(k) = e(l)(k)� _F (z(l)(k)) ; (17)

e(l)(k) =

�
e(k) ; l = L

�(l+1)(k) ��(l+1)(k) ; otherwise
(18)

The matrices �(l) and �(l) are de�ned by

�(l) =

0
BBBB@

(l)
1

(l)
2
...

(l)

Nl

1
CCCCA ; �(l) =

0
BBBB@

�
(l)

1

�
(l)

2

...

�
(l)

Nl

1
CCCCA ; (19)

where

�(l)
n

=
@z

(l)
n

@y(l�1)
; (20)

(l)
n

=
@z

(l)
n

@w
(l)
n

: (21)

Based on this framework, the design of MRL-NNs
can easily be derived. The di�culty is due to the non-
di�erentiability of rank functions, but we can circum-
vent this problem by using pulse functions as follows [3].

@�
(l)
n

@y(l�1)
=

@�
(l)
n

@a
(l)
n

= c(l)
n
�

Q(�
(l)
n 1� y(l�1) � a

(l)
n)

Q(�
(l)
n 1� y(l�1) � a

(l)
n) � 10

(22)

@�
(l)
n

@�(l)
n

= s(l)n �

1�
1

Nl�1

Q(�(l)n 1� y(l�1) � a(l)
n
) � 10 :

(23)

In (22) and (23), Q(v) � (q(v1); q(v2); � � � ; q(vn)), where

q(v) �

�
1 ; if v = 0
0 ; if v 2 IR n f0g

(24)

and 1 = (1; 1; � � � ; 1). To avoid abrupt changes and
achieve numerical robustness, we frequently replace the
function q(v) by smoothed impulses q�(v), � � 0, such
as exp[� 1

2
(v=�)2] or sech2(v=�).

4We denote _F (z) � (_f(z1); _f(z2); � � � ; _f(zn)). The symbol `�'
denotes an array (element-by-element) multiplication.

The remaining unknown is _F (�), that depends on the
type of the MRL-NN in use. For the MRL-NN of type
I, F (z(l)) = z(l), so that _F (z(l)) = 1. For the MRL-
NN of type II, we will use f(z) = [1 + exp(�� z)]�1,
� � 1, whose derivative is _f(z) = � f(z)[1 � f(z)], so
that _F (z(l)) = �y(l) � [1� y(l)].

4 APPLICATION IN OCR

Using the design framework discussed in the previous
section, we now describe some experimental results in
a problem of optical character recognition (OCR). Our
approach is to perform a comparative analysis of MRL-
NNs versus MLPs, illustrating some of the characteris-
tics of both systems. We show that the MRL-NNs are
a good alternative to MLPs, usually providing equal or
better performance with smaller training times.
To do so, we used a large database of handwritten

characters provided by the National Institute of Stan-
dards and Technology (NIST) [1]. We selected a total of
K = 61; 094 samples of handwritten digits to form our
data set. In our simulations, we normalized the feature
vectors (64 dimensional Karhunen-Lo�eve transforms) by

x(k)!
1

2

�
x(k)

maxk kx(k)k1
+ 1

�
(25)

The data set was split such that 45; 000 digits were used
for training and the remaining 16; 094 digits were used
for testing. The �rst 15; 000 elements of the training
set were used as a validation set during the training
process. The training sequence was ordered such that
one instance of every digit is presented to the system in
each iteration.
After making several tests, we have set a group 12

experiments with 3 di�erent network topologies: 64-
N-10 MRL-NNs and MLPs, N = 5; 10; 20. This no-
tation indicates a system with 64 inputs, N hidden
nodes, and 10 outputs. Two di�erent step sizes were
tested: � = 0:005; 0:05. Every experiment was repeated
5 times with di�erent random initial conditions, and
the best result is reported here. Among many possi-
ble ways to initialize the systems, and after perform-
ing various tests, we initialized the weights randomly

in the ranges: a
(l)
n : [�0:1; 0:1], r

(l)
n : [1; Nl�1], b

(l)
n :

[�1=
p
Nl�1; 1=

p
Nl�1], �

(l)
n : [�0:1; 0:1], �

(l)
n : [0:4; 0:6].

Further, in order to estimate gradients, we smoothed
impulses with q�(v) = exp[� 1

2
(v=�)2], � = 0:05. Due to

the size of the training set, we have used the proposed
training algorithm with M = 1 only. We have tested
the case M > 1 with a small subset of the training set,
but no signani�cant improvements were observed. Both
MRL-NNs and MLPs were de�ned using a sigmoid ac-
tivation function with � = 1 (MRL-NNs of type II). As
usual, the desired system output d = (d0; d1; � � � ; d9) was
de�ned by

dn =

�
1 ; x$ digit n
0 ; otherwise

(26)

FM =kE(�)k=kR(�)k

MRL5 MLP5 MRL10 MLP10 MRL20 MLP20

Training 11.8/13.2/10.5 9.9/8.8/11.1 7.4/6.9/7.8 7.4/7.0/7.7 8.4/7.8/9.0 7.5/6.8/8.2

Testing 18.7/22.4/15.0 18.4/19.9/16.9 11.0/13.1/8.9 11.1/10.9/11.4 17.4/24.6/10.2 11.8/12.8/10.9

Epoch 3 10 62 96 9 88

Table 1: Figure of merit / mean error rate / mean rejection rate corresponding to the optimal set of weights of best
MRL-NNs vs. best MLPs for � = 0:05.

In the attempt to compare di�erent systems, a �gure
of merit (FM) was de�ned as follows

FM(t) =
1

2
(kE(�)k+ kR(�)k) (27)

where � 2 [0; 1] is the con�dence threshold; t is the
epoch; E is the error rate (%), computed, for a given �,
as the ratio of the number of misclassi�ed digits over the
number of digits that were not rejected during the clas-
si�cation (in a percentage basis); R is the rejection rate
(%), computed, for a given �, as the ratio of the number
of rejected digits over the total number of elements in
the set under consideration (also in a percentage basis);
and

kE(�)k =
1

10

9X
i=0

E(
i

10
) (28)

kR(�)k =
1

10

9X
i=0

R(
i

10
) (29)

The training process tends to decrease the �gure of
merit, and good performance corresponds to small val-
ues of FM. A given classi�cation is rejected if the desired
n-th output is dn = 1 but the actual n-th output has
the property maxfyg = yn < �, where y is the system
output. An error (misclassi�cation) is obtained when
dn = 1 but maxfyg 6= yn. The error rate is computed
excluding the rejected digits.

Using our proposed training algorithm with all the
above considerations, we observed that, either for a step
size � = 0:005 or � = 0:05, the MRL-NNs required a
smaller number of iterations than MLPs, and provided
similar performances (FMs). Computing the �gures of
merit of MLPs with equal number of iterations of MRL-
NNs, we usually observed better performances of MRL-
NNs. Table 1 summarizes some of the results. The
best training performance was obtained with a 64-10-10
MRL-NN (MRL10, FM=7.4%). Similar results were ob-
tained with a 64-10-10 MLP (MLP10, FM=7.4%) and
a 64-20-10 MLP (MLP20, FM=7.5%), but with a larger
number of iterations. These best results were all ob-
tained with � = 0:05. Due to space limitations, we will
present further details of our experiments in a forthcom-
ing longer paper.

References

[1] M. D. Garris, J. L. Blue, G. T. Candela, D. L.
Dimmick, J. Geist, P. J. Grother, S. A. Janet,
and Charles L Wilson. NIST form-based hand-
print recognition system. Technical Report NISTIR
5469, National Institute of Standards and Technol-
ogy, July 1994.

[2] S. Marcos, O. Macchi, C. Vignat, G. Dreyfus, L. Per-
sonnaz, and P. Roussel-Ragot. A uni�ed framework
for gradient algorithms used for �lter adaptation and
neural network training. Int'l. Journal of Circuit

Theory and Applications, 20:159{200, 1992.

[3] L. F. C. Pessoa and P. Maragos. MRL-Filters: A
general class of nonlinear systems and their optimal
design for image processing. IEEE Trans. on Image

Processing, July 1998.

[4] L. F. C. Pessoa and P.Maragos. Morphological/rank
neural networks and their adaptive optimal design
for image processing. In Proc. IEEE Int'l Conf.

Acoust., Speech, Signal Processing, volume 6, pages
3399{3402, May 1996.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Willians.
Learning Internal Representations by Error Prop-

agation, volume 1 of Parallel Distributed Process-

ing: Explorations in the Microstructure of Cogni-

tion, chapter 8, pages 318{362. MIT Press, Cam-
bridge, MA, 1986. D. E. Rumelhart and J. L. Mc-
Clelland, eds.

[6] P. Salembier. Adaptive rank order based �lters. Sig-
nal Processing, 27:1{25, Apr. 1992.

[7] G. M. Shepherd and R. K. Brayton. Logic oper-
ations are properties of computer-simulated inter-
actions between excitable dendritic spines. Neuro-

science, 21(1):151{165, 1987.

[8] P. Yang and P. Maragos. Min-max classi�ers: Learn-
ability, design and application. Pattern Recognition,
28(6):879{899, 1995.

