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ABSTRACT

This work presents the algorithmic variations of a 3-D

motion estimation method which make it suitable to 3-D

view registration. Important characteristics are that the

method is suitable for unsupervised 3-D registration and

that texture information can be incorporated with bene�-

cial e�ects on the overall 3-D registration performance.

A peculiarity of the method is that it operates in the fre-

quency domain.

1 INTRODUCTION

Textured 3-D models of real objects are obtained by

various tasks: i) the aquisition of partial 3-D scans of

the object; ii) their geometric alignement or registration,

which is typically done by the ICP algorithm and its

extensions [1, 2, 3]; iii) the surface modelization of the

3-D data by polygonal meshes; iv) the registration of

the object's texture with the corresponding structure.

This work reports on a new method for solving step ii)

and it presents some variations to the original algorith-

mic idea [4], imposed by the nature of what was found

to a�ect the algorithm as noise with 3-D scans. This dis-

turbance is rather di�cult to model as it may be due,

besides to the inevitable aquisition noise, to occlusions

or asymmetries of the partial scans. The problems of the

various causes of noise on the algorithm of [4] have been

clearly assessed through experimentation, and e�ective

cures against are presented.

2 PROBLEM STATEMENT

Let s1(x), x 2 IR3, be the data of the textured surface

of a 3-D object and let s2(x) be a rigidly translated and

rotated version of s1(x), i.e.

s2(x) = s1(R
�1x� t) : (1)

According to (1) s2(x) is �rst translated by the vector

t 2 IR3 and then rotated by the matrix1 R 2 SO(3).

Data of this kind, in the view registration problem,

may be obtained from the common part of two partially

overlapped 3-D scans of an object.

1SO(3) = fR 2 IR3�3;R�1 = RT ;det (R) = +1g is the group

of the 3� 3 special orthogonal matrices.

We build 3-D companion solids, denoted as `i(x),

of 3-D scans by convolving the 3-D textured surfaces

si(x) with a small sphere centered around the origin.

With the data we used, which typically were matrices

128 � 128 � 128, a sphere with 9 pixels diameter was

found to be a good choice. The purpose of this convo-

lution is to create small weighted solid regions around

3-D textured surface si(x), with weight decreasing with

the distance from si(x). In this way solids `i(x) ideally

maintain the same spatial information of the 3-D sur-

faces si(x), including that of the texture, without cre-

ating the mathematical di�culties given in the Fourier

domain by the impulsive supports of si(x). Fig.1-(a)

shows a view of the range data surface s1(x) (namely

the �le JET1 of [7]) and Fig.1-(b) a view of its compan-

ion solids `1(x).

Denote as

Li(k)
:
= F [`i(x) j k] =

Z Z Z +1

�1

`i(x)e
�j2�kTx dx ; (2)

i = 1; 2 ; k =
�
kx ky kz

�T
;

the 3-D cartesian Fourier transform of `i(x); i = 1; 2; it

is straightforward to prove that (1) implies that the two

transforms are related as

L2(k) = L1(R
�1k)e�j2�k

TRt (3)

therefore their magnitudes are related as

jL2(k)j = jL1(R
�1k)j : (4)

The algorithm of [4] uses relationship (4) in order to

determine R in the frequency domain. After estimating

R it also determines t, as the two problems can be nicely

decoupled in the frequency domain [4]. In the following

we will motivate the variations from the algorithm of [4]

found bene�cial with actual 3-D scans.
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Figure 1: (a) Example of si(x): range image JET1 of [7]; (b) its companion solid.

3 ALGORITHMIC CHANGES

3.1 Estimate of the rotational axis !

The algorithm of [4] searches for the locus of null values

in the di�erence function

Q(k)
:
=

���� jL1(k)j

L1(0)
�
jL2(k)j

L2(0)

���� =
����� jL1(k)j

L1(0)
�

��L1(R
�1k)

��
L1(0)

����� ;
(5)

since from (5) it is clear that Q(k) = 0 if R�1k = k

which is equivalent to Rk = k. It can be straightfor-

wardly proved that the rotational matrix R possesses

eigenvalues �1 = 1, �2 = ej and �3 = e�j , where  is

the angular shift around the rotation axis corresponding

to R. If ! denotes the unit vector pointing towards the

same direction of the rotation axis, it can be proved that

! has the following properties: i) it is the eigenvector

associated to �1 = 1 (therefore it satis�es Rk = k); ii)

it is the only real eigenvector of R. In other words the

locus Q(k) = 0 includes a line through !. For objects

without special symmetries (as natural objects typically

are) this property of the function Q(k) can be exploited

in order to determine the versor !.

Since Q(k) can be small both because jL1(k)j =L1(0)

and jL2(k)j =L2(0) are nearly equal or because they are

both rather small, but nonetheless di�erent, it was found

bene�cial to replace it with

Q0(k)
:
=

�����
����log10 jL1(k)j

L1(0)

����
1

4

�

����log10 jL2(k)j

L2(0)

����
1

4

����� : (6)

The impact of the frequency regions associated to

low dynamic range values of jL1(k)j =L1(0) and

jL2(k)j =L2(0) on locus Q0(k) = 0 is not as pronaunced

as in locus Q(k) = 0, therefore the use of Q0(k) greatly

simpli�es the search for the rotational axis. This 3-D

problem in [4] is conveniently turned into a 2-D one by

the following procedure:

1) express Q0(kx; ky; kz) in spherical coordinates as

Q(k�; k'; k�); notice that this function can be rep-

resented only in a hemisphere because of the her-

mitian symmetry of the Fourier transform;

2) compute the radial projection of Q(k�; k'; k�) as

P(k'; k�)
:
=

Z 1

0

Q(k�; k'; k�) dk� ; (7)

3) compute the angular coordinates of ! in spherical

representation as

('; �)
:
= arg min

k';k�
[P(k'; k�)] ; (8)

since, from the inclusion of ! within the locus

Q0(k) = 0, P(k'; k�) � 0 with P('; �) = 0;

4) de�ne ! the versor of the direction ('; �).

Projection along axis k�, in practice, is very sensitive

to discretization, inevitable with numerical implementa-

tions of (7), and the occurance of spurious local minima

is not infrequent.

The following variations to the above procedure based

on Q0(k) were found bene�cial. Since Q0(k) has con-

siderably more high frequency content than Q(k) by

de�nition, it is appropriate to low-pass �lter it by

H(k�; k'; k�) in such a way to retain not more than the

70% of its low-frequency energy: let's call Q
0
= HQ.

Instead of projecting Q
0
(k�; k'; k�) along axis k� by (7)

in order to obtain a 2-D surface to search for minima,

we replace steps 20) and 30) by the following ones:

20) compute

P0(k'; k�)
:
=
X
k��0

min
(k0

';k
0

�
)2W (k�;k';k�)

Q
0
(k�; k

0
'; k

0
�) ;

(9)

30) compute

('̂; �̂)
:
= arg min

k';k�
[P0(k'; k�)] : (10)
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Figure 2: (a), (b) Views of partial range images; (c), (d) textures associated with them; (e) view of the composition

of the range data (a), (b); (e) view of the composition of the range and texture data (a), (b), (c), (d).

Step 20) prescribbes for each pair (k'; k�) to consider

planes at constant k�, and , for each plane, to search for

the minimumof functions Q
0
on a 3�3 window centered

at (k�; k'; k�) and denoted as W (k�; k'; k�). All the

minima found in windowsW (k�; k'; k�) and correspond-

ing to a speci�c value of k� must be subsequently added

together in order to form function P0(k'; k�). Function

P0(k'; k�) is less sensitive to the �nite geometry e�ects

plaguing P(k'; k�) since P
0(k'; k�), because of its con-

struction, is able to track the minima of Q
0
also when

they \move" around pixels associated to a speci�c k'
value because of quantization e�ects. The minima of

P0(k'; k�) computed by 30) are generally more robust

estimates of the rotational axis !, than those obtained

from P(k'; k�) by by (8).

3.2 Estimate of the rotational angle  

The procedure to determine the rotational angle  

around rotational axis ! has the followig steps:

1) transform Li; i = 1; 2 in a cilindrical coordinate sys-

tem (u; v; w) with the w-axis along !. In this new

reference system the 3-D rotation matrix Rw( )

clearly shows the structure of a 2-D rotation by  

around the w-axis, i.e., it becomes

Rw( ) =

2
4 cos � sin 0

sin cos 0

0 0 1

3
5 :
=

2
4 r( )

0

0

0 0 1

3
5 ;

(11)

2) project Li along the w-axis as



p0i(u; v) =

Z +1

�1

jLi(u; v; w)j dw ; i = 1; 2 ;

(12)

3) since it is

p02

��
u

v

��
= p01

�
r�1( )

�
u

v

��
; (13)

determine  from (13) by the 2-D technique of [5].

The disambiguation between the two admissible esti-

mates b and b + �, due to the hermitian symmetry of

the Fourier transform, can be accomplished along with

the estimate of the translational vector t (see [6]) by the

procedure of section 2.3 of [4].

Since the information about rotation is associated to

the low-frequency energy, it was found advisable, in-

stead of using p0i(u; v) de�ned by (12) to use their low-

passed versions retaining approximately the 20% of the

low-frequency energy.

4 EXPERIMENTAL RESULTS

As a practical example of the method, Fig.2-(a) and

Fig.2-(b) show two views of two partially overlapped

range images of a bas-reliev by the Renaissance sculptor

Donatello, belonging to the main altar of the Church of

Sant'Antonio in Padova, Fig.2-(c) and Fig.2-(d) shows

the textures associated with these two range images.

This object, whose dimension are approximately 60�100

cm, is very articulated since there are many anatomical

details such as faces, arms, hands, etc., in full 3-D reliev.

The regions of the range images associated to the

same scene were determined by a manual procedure and

the proposed algorithm was used in order to determine

the rotation and the translation between the taking po-

sitions of the range camera. Fig.2-(e) shows a view of

the 3-D model obtained from the composition of the

range images of Fig.2-(a) and Fig.2-(b) based on the es-

timated rotation and translation, after the noise removal

provisions described in [4]. Fig.2-(f) shows a view of the

3-D textured model obtained from the range and texture

data of Fig.2.

5 CONCLUSIONS

This work presents the application to 3-D view regis-

tration of an algorithm for estimating 3-D rotations and

translations based on the frequency domain, preliminar-

ily described in [4]: we reported the algorithmic vari-

ations to the procedure of [4] suggested by its actual

use. E�cient algorithms for computing the M-D FFT

can e�ectively alleviate the computational burden of op-

erating in the frequency domain [8],[9] The presented

technique can be applied to 3-D views registration in

low-precision tasks targeted to visualization or it can be

used in order to obtain e�ective starting points for stan-

dard methods, which, as well-known, can give accurate

solutions, once they are properly initiated [3].

Further work is necessary in order to consolidate the

robustness and the e�ciency of the proposed 3-D regis-

tration technique. An important aspect of the method,

is that texture information can be used in order to im-

prove the overall range registration quality.
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