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ABSTRACT

In this paper we present a new QR decomposition
(QRD) based fast multichannel adaptive �ltering algo-
rithm. This algorithm is based on a block reduction
technique which leads to a substantial reduction of com-
plexity compared to other QRD-based algorithms. It
has a complexity of O (N) where N is the sum of the
channels orders which may be di�erent. It, also, has
good numerical properties and is amenable to systolic
architecture. Simulation shows a better robustness than
the QRD-RLS in the context of highly intercorrelated
channels inputs.

1 Introduction

Multichannel adaptive algorithms �nd application in
many area such as multipath equalization, adaptive
antennas and stereophonic echo cancellation. Fast
multichannel algorithms, which extend monochannel
fast QRD-based adaptive algorithms, have been devel-
oped for both equal and unequal channel orders (see
[7][8][1][6]). Here, we introduce a new QRD-based ap-
proach to multichannel adaptive algorithm, that permits
a substantial reduction of complexity. This approach
is based on an iterative block transform that separates
the channels treatment. Thus, the processing in each
channel taken separately (by annulling the other chan-
nels inputs) corresponds exactly to the processing in a
Fast QRD-RLS single channel algorithm [4]. This pa-
per begins with the presentation of the QRD-RLS mul-
tichannel algorithm, then we derive our fast adaptive
algorithm.

2 Multichannel Algorithm Framework

We consider a p-channel adaptive algorithm, where
the desired response d (n) is modelled as a sum
of p �lters of orders Ni (i = 1; : : : ; p) driven by
inputs xi (n) (i = 1; : : : ; p). The adaptive �l-
ter parameter vectors are wi (n) (i = 1; : : : ; p).
We de�ne the N -dimension (N = N1 + : : : +
Np) vectors: xT (n) =

�
xT1 (n) � � �xTp (n)

�
where

xTi (n) = (xi (n) � � �xi (n�Ni + 1)), and wT (n) =

�
wT
1 (n) � � �wT

p (n)
�
. Then the �lter error output is

e (n) = d (n)�

pX
i=1

xTi (n)wi (n)

= d (n)� xT (n)w (n)

In the multichannel QRD-RLS algorithm, the �l-
ter coe�cient vector w (n) is identi�ed by solving the
least squares problem min

w(n) J (n) where J (n) =Pn

k=0 �
n�k

�
d (k)� xT (k)w (n)

�2
and � is the forget-

ting factor.

If we denote

e (n) = d (n)�X (n)w (n) (1)

with

XT (n) = (x (n) � � �x (0))

dT (n) = (d (n) � � � d (0))

and let � (n) = diag (1; �; : : : ; �n), then we have J (n) =

k� (n) e (n)k
2
=


QT (n)� (n) e (n)



2 where Q (n) is
an orthogonal matrix such that QT (n)� (n)X (n) =�




R (n)

�
and R (n) is a (N �N) upper triangular

matrix. In the following, symbol 
 will indicates any
adequate zero matrix.

Consequently, applying QT (n)� (n) to both sides of
equation (1) gives�

�ee (n)
�ew (n)

�
=

�
�de (n)
�dw (n)

�
�

�



R (n)

�
w (n)

from which we deduce the optimal �lter w (n) of the
QRD-RLS algorithm as the solution of

R (n)w (n) = �dw (n) (2)

The input data matrix can be expressed recursively

� (n)X (n) =

�
xT (n)

�� (n� 1)X (n� 1)

�
, so the matrix

R (n) can be updated recursively.



This is done via an updation scheme of the (N �N)
upper triangular matrixR (n) and theN -dimension vec-
tor �dw (n) :

Qv (n)

�
xT (n) d (n)
�R (n) ��dw (n)

�
=

�
0 �de1 (n)

R (n+ 1) �dw (n+ 1)

�
(3)

where Qv (n) is an orthogonal ((N + 1)� (N + 1)) ma-
trix.

We introduce in the next section an iterative transfor-
mation which permits to decouple the channels in order
to apply a fast QRD-based algorithmic scheme to each
one.

3 Fast Multichannel Algorithm

If we partition R (n) in p diagonal upper triangular
blocks Rk (n) ; k = 1; : : : ; p of sizes (Nk �Nk), and p�1
extra-diagonal blocks Bk;p (n) ; k = 1; : : : ; p � 1 of sizes
(Nk � (Nk+1 + � � �+Np)) [3]

R (n) =

0
B@

R1 (n) 


. . .


 Rp (n)

1
CA+

0
BBB@


 B1p (n)
...
Bp�1;p (n)


 


1
CCCA :

which can also be represented by

RT (n) =
�
CT
1 (n) � � � CT

p (n)
�

Ck (n) =
�

 Rk (n) Bk;p (n)

�
; k = 1; : : : ; p� 1

Cp (n) =
�

 Rp (n)

�
:

Equation (2) then leads to p subsystems

Ck (n)wk;p (n) = �dwk (n) ; (k = 1; : : : ; p) (4)

for an adequate partitioning of �dw (n) into �dwk (n) and
with wk;p (n) =

�
wT
k (n) � � �wT

p (n)
�
. Next let us de-

note RJ
k (n) = J:Rk (n), B

J
k;p (n) = J:Bk;p (n) and

�dwJk (n) = J:�d
w

k (n) with J being an up-down permu-
tation. Equation (4) is equivalent to

RJ
k (n)wk (n) = �dw0k (n) ; k = 1; : : : ; p

with

�dw0k (n) = �dwJk (n)�BJ
k;p (n)wk+1;p (n) (5)

for k = 1; : : : ; p� 1

�dw0p (n) = �dwJp (n)

Thus we have introduced an iterative transformation
of both

�
R (n) ; �dw (n)

�
into

�
RJ

k (n) ;
�dw0k (n)

�
1�k�p

,

The above quantities are updated by (see [2] )

Qv
k (n)

�
xTk (n)

�RJ
k (n� 1)

�
=

�



RJ
k (n)

�
for k = 1; : : : ; p:

Qv
k (n)

�
zTk (n) �k (n� 1)

 ��dw0k (n� 1)

�
=

�
z0Tk (n) �0k (n)
BJ
k;p (n)

�dwJk (n)

�
�dwJk (n)�BJ

k;p (n)w (n) = �dw0k (n)

for k = 1; : : : ; p� 1 , and

Qv
p (n)

�
�p (n� 1)
��dw0k (n� 1)

�
=

�
�0p (n)
�dwJk (n)

�
�dwJp (n) = �dw0p (n)

(6)
where zTk (n) =

�
xTk+1 (n) � � � xTp (n)

�
.

In the next subsections, we derive two equivalent tri-
angularization schemes of an augmented input data ma-
trix. Which leads to the update equations for the fast
O (N) algorithm [5]. In the following, we are concerned
with the kth channel (for k = 1; : : : ; p).

3.1 Backward linear prediction

We consider the backward linear prediction problem of
orderNk ; it consists on estimating the desired backward
input dbk (n) , xk (n�Nk) using xk (n). The error of
the backward prediction is

ebk (n) = dbk (n)� xTk (n)wb
k (n)

where wb
k (n) is the transversal backward predic-

tion coe�cient vector, selected so as to minimize

� (n) ebk (n)


2 with

ebk (n) = dbk (n)�Xk;Nk
(n)wb

k (n)

where dbTk (n) =
�
dbk (n) � � � dbk (0)

�
and

XT
k;Nk

(n) =
�
xk (n) � � � xk (0)

�
.

Then, by applying an orthogonal matrix Qk;Nk
(n) to

both sides of the weighted equation, we obtain

Qk;Nk
(n)� (n) ebk (n) =

�
�dbek (n)
�dbwk (n)

�
�

�



RJ
k (n)

�
wb
k (n)

(7)
where �dbek (n) is a (n�Nk)-vector, �d

bw
k (n) is a Nk-

vector.
We construct an augmented input (n� (Nk + 1))-

matrixXk;Nk+1 (n) =
�
Xk;Nk

(n) dbk (n)
�
. Then ap-

plying Qk;Nk
(n) to Xk;Nk+1 (n) with (7) gives

Qk;Nk
(n)Xk;Nk+1 (n) =

�

 �dbek (n)

RJ
k (n)

�dbwk (n)

�

Again, we apply Qk;Nk
(n) to the pinning n-vector

� (n) =
�
1 0 � � � 0

�

�k;Nk
(n) = Qk;Nk

(n)� (n) =

0
@ 
k;Nk

(n)
0

gk;Nk
(n)

1
A (8)

where gk;Nk
(n) is a Nk-vector.



If we denote �dbek;1 (n) the �rst element of �dbek (n), the
backward prediction error is equal to

ebk (n) = 
k;Nk
(n) �dbek;1 (n)

Finally, a supplementary orthogonal transformation
Qb

k (n) is required to achieve the triangularization of
Xk;Nk+1 (n)

Qb
k (n)

�

 �dbek (n)

RJ
k (n)

�dbwk (n)

�
=

0
@ 
 



 "bk (n)

RJ
k (n)

�dbwk (n)

1
A

Transforming in the same manner � (n) leads to (see
[1])

�k;Nk+1 (n) = Qk;Nk+1 (n)� (n) =

0
@ 
k;Nk+1 (n)

0

gk;Nk+1 (n)

1
A

with gk;Nk+1 (n) =

�
gk;Nk+1 (n)
gk;Nk

(n)

�

3.2 Forward linear prediction

Similarly, we consider the forward linear prediction
problem of order Nk ; it consists on estimating the de-
sired forward input d

f
k (n) , xk (n) using xk (n� 1).

The error of the forward prediction is

e
f
k (n) = d

f
k (n)� xTk (n� 1)wf

k (n)

where wb
k (n) is the transversal forward prediction coef-

�cient vector, selected so as to minimize



� (n) efk (n)




2
with

e
f
k (n) = d

f
k (n)�Xk;Nk

(n� 1)wf
k (n)

where dfTk (n) =
�
d
f
k (n) � � � d

f
k (0)

�
.

This leads to another expression of Xk;Nk+1 (n) =�
d
f
k (n)

�Xk;Nk
(n� 1)

�
with �XT

k;Nk
(n� 1) =�

XT
k;Nk

(n� 1) 0
�

Then, by applying the orthogonal matrix
Qk;Nk

(n� 1) of equation (7) to both sides of the
weighted equation, we obtain�

Qk;Nk
(n� 1) 0

0 1

�
� (n) efk (n) (9)

=

0
@ �d

fe

k (n)
�d
fw
k (n)

�nd
f
k (0)

1
A�

0
@ 


RJ
k (n� 1)
0

1
Aw

f
k (n)

where �d
fe

k (n) is a (n�Nk � 1)-vector and �d
fw

k (n) is a
Nk-vector.
If we denote �dfek;1 (n) the �rst element of �dfek (n), the

forward prediction error is equal to

e
f
k (n) = 
k (n) �d

fe
k;1 (n)

After the application ofQk;Nk
(n� 1) in equation (9),

the triangularization of Xk;Nk+1 (n) continues by apply-

ing an orthogonal transformation Qfe
k (n) to annihilate

�d
fe
k (n)

Q
fe
k (n)

0
@ �d

fe
k (n) 


�d
fw
k (n) RJ

k (n� 1)

�nd
f
k (0) 0

1
A

=

0
@ 
 


�d
fw
k (n) RJ

k (n� 1)

"
f
k (n) 0

1
A

Then a supplementary orthogonal transformation
Q

fw
k (n) is required to achieve the triangularization of

Xk;Nk+1 (n)

Q
fw
k (n)

0
@ 
 


�d
fw
k (n) RJ

k (n� 1)

"
f
k (n) 0

1
A =

�



�RJ
k (n)

�

The same scheme operated on the pinning vector
� (n+ 1) gives another expression of �k;Nk+1 (n)

0
@ 
k;Nk+1 (n)

0

gk;Nk+1 (n)

1
A = Q

fw
k (n)

0
BB@


k;Nk+1 (n)
0

gk;Nk
(n� 1)

�k (n)

1
CCA

Thus we can e�ciently update 
k;Nk
(n) and

gk;Nk
(n) :

3.3 The �ltering section

Let us de�ne the channel k �lter output yk (n) =

xTk (n� 1)wf
k (n), and the partial �lter output

yk;p (n) =
Pp

i=k yi (n), it follows that the �lter output
error

e (n) = d (n)� y1;p (n)

From equation (6), we can show that

�dw0k (n) = �dwk (n)� yk+1;p (n)gk;Nk
(n) (10)

which require only O (Nk) complexity. The partial �lter
output yk;p (n) is computed recursively in the backward
direction (k = p ! 1) using the partial �lter error ex-
pression 
k;Nk

(n)�k (n) = �k (n� 1)� yk;p (n).
The algorithm summary is presented below using

the reduced matrix Qv
k;Nk

(n) ;Qfev
k (n) and Q

fwv
k (n),

rather than the original long matrix involved in the pre-
vious section. It is subdivided in two main loops on
channels :
- The �rst one (steps 1-8) is done forwardly; it con-

cerns the updation for the backward-forward prediction
problem and the �rst part of the �ltering section (steps
7-8). Like other sequential algorithms [7][6], this loop
requires O (N) operations.
- The second one (steps 9-10) is done backwardly, it

achieves the second part of the �ltering section as well



as the block transform eq.(5). This second loop requires
only O (N) operations since the block transform can be
e�ciently computed with the same complexity eq.(10).
The overall algorithm is summarized by

for n = 0 : L
�1 (n� 1) = d (n)
for k = 1 : p

1- Qv
k;Nk

(n� 1)

�
xk (n)

��d
fw
k (n� 1)

�
=

 
�dfek;1 (n)
�d
fw
k (n)

!

2- Q
fev
k (n)

 
�dfek;1 (n)

�"
f
k (n� 1)

!
=

�
0

"
f
k (n)

�

3- Q
fev
k (n)

�

k;Nk

(n� 1)
0

�
=

�

k;Nk+1 (n)

�k (n)

�

4- Q
fwv
k (n)

�
�d
fw
k (n)

"
f
k (n)

�
=

�
0

"bk (n)

�

5- Q
fwv
k (n)

�
gk;Nk

(n� 1)
�k (n)

�
= gk;Nk+1 (n)

6- Qv
k;Nk

(n)

�
1
0

�
=

�

k;Nk

(n)
gk;Nk

(n)

�

7- Qv
k;Nk

(n)

�
�k (n� 1)
��dw0k (n� 1)

�
=

�
�0k (n)
�dwJk (n)

�
8- 
k;Nk

(n)�k+1 (n� 1) = �0k (n)
end k

for k = p : �1 : 1

9-

�
�k (n)
�dw0k (n)

�
=

�
�0k (n)
�dwJk (n)

�
��


k;Nk
(n)

gk;Nk
(n)

�
yk+1;p (n)

10- yk;p (n) = �k (n� 1)� 
k;Nk
(n)�k (n)

end k

e (n) = d (n)� y1;p (n)
end n

4 Simulation

In this section we present a simulation of our algorithm
in the context of highly intercorrelated inputs xk, this
case is encountered in some real applications: for ex-
ample the stereophonic acoustic echo cancellation prob-
lem. We consider a two-channel �lter of orders 36 and
32. These �lters are driven by two highly intercorre-
lated inputs, x1 (n) and x2 (n) respectively. The result
of simulations are averaged over 100 Monte Carlo runs.
Figure 1 compares our algorithm with the multichannel
QRD-RLS algorithm, when the channels switch charac-
teristics abruptly at iteration n = 400. It shows a better
convergence of our algorithm.

5 Conclusion

We have introduced a new algorithm to multichannel
QRD-based adaptive �ltering. Besides, the good numer-
ical properties of the algorithm and its low complexity
O (N), our algorithm gives better result than standard
QRD-RLS multichannel adaptive �lter for highly inter-
correlated input channels.
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Figure 1: MSE vs. time for the Multichannel QRD-RLS
and the New algorithm, with w=0.95
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