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ABSTRACT

We derive a new adaptive �ltering algorithm called the
Instrumental Variable A�ne Projection (IVAP) algo-
rithm and give its fast version (IVFAP algorithm). The
IVAP algorithmdeparts from the AP algorithmand uses
an IV. The IV process is generated in a way such that the
new algorithm combines between the AP and the Fast
Newton Transversal Filter (FNTF) algorithms. Simula-
tions show that the IVAP algorithm is more robust to
noise than the AP algorithm. With the IV, the sam-
ple covariance matrix loses its Hermitian property and
its displacement structure is di�erent from the one of
the AP algorithm. Consequently, the derivation of a
fast version is done by deriving the IV Sliding Window
Covariance Fast Transversal Filter (IV SWC FTF) al-
gorithm. Using this and other ingredients, we derive
the IVFAP algorithm whose computational complexity
is nearly the same as the one of the FAP algorithm.

1 INTRODUCTION

The Fast A�ne Projection algorithm outperforms the
classical adaptive algorithms because of its convergence
speed which approaches that of the Recursive Least
Squares (RLS) algorithm and its computational com-
plexity which is slightly greater than the one of the Least
Mean Squares (LMS) algorithm. The AP algorithm is
characterized by an updating-projection scheme of the
adaptive �lter on an L dimensional data-related sub-
space. This projection on a subspace whose dimension
is in general very small compared to the �lter length,
gives the AP algorithm a tracking ability which is su-
perior to the RLS and LMS algorithms. Nevertheless,
when a projection is performed, noise ampli�cation al-
ways arises and this phenomenon degrades the perfor-
mances of the algorithm. In fact, in the AP algorithm,
a covariance matrix of size L is estimated from the data
over a rectangular sliding window of size equal to the �l-
ter length. In order to apply the projection scheme, this
covariance matrix has to be inverted and noise ampli�ca-
tion originates from this operation in the case where the
covariance matrix is ill-conditioned. This fact is typical
in applications where the input signal to the adaptive

�lter is highly correlated which is the case for speech
signals. Several solutions have been given in order to
alleviate this problem for Acoustic Echo Cancellation
(AEC) applications. In [1], a regularization is achieved
by adding �I to the covariance matrix whereas in [2],
an exponential window is used in lieu of the rectangular
window. All of these methods lead to approximations
of the exact AP recursions.
In this paper, we introduce an Instrumental Variable
(IV) and derive an algorithm that is situated between
the FAP algorithmand the Fast Newton Transversal Fil-
ter (FNTF) algorithm. The IV is used in the estimation
of a new covariance matrix that replaces the covariance
matrix of the AP algorithm. The new covariance ma-
trix appears to be better conditioned. This renders the
new algorithm more robust against noise ampli�cation.
Nevertheless, the Hermitian structure of the covariance
matrix is lost and a new algebraic structure appears.
Henceforth, the derivation of a fast algorithm necessi-
tates the derivation of an IV SlidingWindow Covariance
RLS (IV SWCRLS) algorithmand therefore its fast ver-
sion which is the IV SWC Fast Transversal Filter (IV
SWC FTF) algorithm.

2 THE INSTRUMENTAL VARIABLE

AFFINE PROJECTION ALGORITHM

The AP algorithm constitutes a generalization to the
Normalized LMS (NLMS) algorithm. For an adaptive
�lter of length N denoted by WN;k at time k and for an
input signal x(k) and the corresponding regression vec-

tor XN (k) =
�
xH(k) � � �xH(k�N+1)

�H
(H represents

the Hermitian transpose operator), the AP algorithm is
given by the following set of equations

�
p
L(k) = dL(k) +XN;L;kW

H
N;k�1 (1)

WN;k = WN;k�1 � ��
pH

L(k)R
�1
L;kXN;L;k ; (2)

where dL(k) = [d(k) � � �d(k�L+1)]
H

is the vector of
the L most recent samples of the desired signal d(k),

�
p
L(k) = [�L(kjk�1) � � ��L(k�L+1jk�1)]

H
is the a pri-

ori error �ltering vector with each component de�ned
by �L(kji) = d(k) + WN;iXN (k) . 0 < � < 1 is the
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Figure 1: Synthesis of the IV.

step-size (relaxation factor), XN;L;k is the L � N Han-

kel data matrix XN;L;k = [XN (k) � � � XN (k�L+1)]
H

and RL;k = XN;L;kX
H
N;L;k is the sample covariance ma-

trix estimated on the basis of a rectangular window of
length N . The AP algorithm performs at each iteration,
a projection of the deviation �lter onto the orthogonal
subspace to the column space of XH

N;L;k.
Consider y(k) to be an IV signal and construct
the corresponding IV regression vector YN (k) =�
yH (k) � � �yH (k�N+1)

�H
, the update equation of the

new algorithm is

WN;k = WN;k�1 � ��
pH

L(k)
eR�1L;kYN;L;k ; (3)

with YN;L;k = [YN (k) � � � YN (k�L+1)]
H

and eRL;k =
YN;L;kX

H
N;L;k. De�ne the deviation �lter to be

fWN;k = WN;k + W o
N with W o

N denoting the optimal
�lter and consider the noiseless case where dL(k) =

XN;L;kW
oH

N . From (3), it follows that fWN;k =fWN;k�1(I � XH
N;L;k

eR�1L;kYN;L;k), (� = 1) which reveals
the projection scheme of the deviation �lter onto the
orthogonal subspace to the space column of XH

N;L;k in
the direction de�ned by the row space of YN;L;k.
The IV signal must lead to decorrelation of the input
signal. One possible IV is the Kalman gain that is
computed in the RLS algorithms. Unfortunately, the
Kalman gain does not have the shift invariance prop-
erty that allows the derivation of fast recursive com-
putations in LS adaptive �ltering. Hence, consider the
LDU decomposition of the inverse covariance matrix and
suppose the prediction �lter is of order M (AR(M ) as-
sumption) with M < N as is the case for the FNTF al-
gorithm. It appears that the IV signal can be generated
according to Fig. (1) where AM (z; k) =

PM

n=0An;kz
�n

and A0;i = 1. Note that in the stationary case:
Syx(z) = AM (z)AM (z�1)Sxx(z) = Sff (z), hence the
cross-covariance matrix Ryx is equal to Rff which is
diagonal if AM (z) is the optimal prediction �lter as-
sociated with x(k). The prediction �lter can be time-
updated using a trellis structure or an FTF algorithm.
AM (z�1; k) being non-causal, it su�ces to replace it by
z�MAM (z�1; k) and to delay the input and desired sig-
nals by M samples to get a realizable structure.

3 THE FAST ALGORITHM

The derivation of the fast algorithm is done in 3 steps.
The �rst step uses the same technique as in [1]. It con-
sists in removing the redundancy in the updating equa-

tion (3) due to the successive regression vectors of the
data matrix YN;L;k. The second step updates the gen-
erators of the inverse covariance matrix. This will be
done by deriving the IV SWC FTF algorithm. Finally,
the third step, uses the displacement structure of the in-
verse covariance matrix in order to compute recursively

�
pH

L(k)
eR�1L;k = lHL (k) =

h
l0(k) � � � l(L�1)(k)

i
: (4)

3.1 FAST COMPUTATION OF THE OUT-

PUT FILTERING ERROR

In the �rst step, the key ingredient is the use of a pseudo-
�lter cWN;k such as

WN;k = cWN;k � �MH
L�1(k)YN;L�1;k ; (5)

where

ML(k) =

2
64

l0
H

(k)
...

l0
H

(k�L+1) + � � �+ l(L�1)
H

(k)

3
75 ; (6)

is computed recursively as follows

ML(k) =

�
0

(ML(k�1))0:L�2

�
+ lL(k) : (7)

The pseudo-�lter is updated according to

cWN;k = cWN;k�1 � �Y H
N (k�L+1)ML�1H

L (k) ; (8)

and the output error �lter is computed in the following
way

�
p
N (k) = b� pN (k)� �MH

L�1(k�1)sL�1(k) ; (9)

where b� pN (k) is the output error of the pseudo-�lter and
sL�1(k) = YN;L�1;k�1XN (k) = sL�1(k�1) +

Y �L�1(k�1)x(k)� Y �L�1(k�N�1)x(k�N ); (10)

� denoting the complex conjugate operator. The set of
equations (5)-(10) constitutes the �rst step of the fast
algorithmwe are deriving. In the following, we derive an
algorithm that e�ciently computes the solution to (4).
In order to do this, we have to analyze the displacement
structure of eR�1L;k. This will be done in an RLS context
by �rst, deriving a recursive version that is the IV SWC
RLS algorithm and afterwards, a fast recursive version
which is called the IV SWC FTF algorithm.

3.2 THE IV SWC RLS ALGORITHM

When using an IV in the SWC RLS context, one has to
verify the orthogonality conditions

kX
i=k�N+1

YL(i)�
H (ijk) = 0L�1 ; (11)



which lead to the normal equations

WL;N;k
eRL;N;k = �PH

L;N;k ; (12)

where eRL;N;k = eRTL;k and

PL;N;k =

kX
i=k�N+1

YL(i)d
H
i : (13)

Note that in the present case, the indices L and N re-
spectively represent the dimension of the problem and
the length of the rectangular window over which the LS
solution is computed. We have the following recursions
for the sample covariance matrix

eRL;N;k = eRL;N�1;k�1 +XL(k)Y
H
L (k) (14)

= eRL;N�1;k +XL(k�N+1)Y H
L (k�N+1) ; (15)

and for the cross-correlation vector

PL;N;k = PL;N�1;k�1 + YL(k)d
H(k) (16)

= PL;N�1;k + YL(k�N+1)dH(k�N+1) : (17)

The derivation of the recursive version of (12) is done
considering two RLS problems: �rst one being a time
and order update recursion (k�1; N�1) ! (k;N ) and
the second one is an order down-date recursion (k;N )!
(k;N�1). The �rst step is a simple Weighted RLS (ex-
ponential window; WRLS) algorithm where the forget-
ting factor � is set to 1. Using (14), (15) and the Ma-
trix Inversion Lemma (MIL), it is easy to show that the
time and order update part of the recursive algorithm
is given by the �rst set of equations (22). Note that be-
cause the Hermitian property of the sample covariance
matrix disappeared with the use of the IV, we have to
compute 2 Kalman gains eCL;N�1;k and eGL;N�1;k that
correspond respectively to the input signal x(k) and to
the IV signal y(k). The IV WRLS and its fast version
called IV FTF algorithm have been derived in [3]. For
the down-date part, let us consider the normal equa-
tions WL;N�1;k

eRL;N�1;k = �PH
L;N�1;k, using (15) and

(17), one �nds easily

WL;N�1;k = WL;N;k + �L;N�1(k)FL;N;k ; (18)

with FL;N;k = �Y H
L (k�N+1) eR�1L;N;k and

�L;N�1(k) = d(k�N+1) +WL;N�1;kXL(k�N+1) :
(19)

Replacing WL;N�1;k in (19) by the right hand side of
(18) gives the following relation

�sL;N (k)
4
= d(k�N+1) +WL;N;kXL(k�N+1)

= �L;N�1(k)�
�1
L;N (k) ; (20)

where ��1L;N (k) = 1� FL;N;kXN (k�N+1).
Applying the MIL to (15),we obtain

eR�1L;N�1;k = eR�1L;N;k �DH
L;N;k�

�1
L;N (k)FL;N;k : (21)

with DH
L;N;k = � eR�1L;N;kXN (k�N+1).

Finally, by associating the time-order update and or-
der down-date equations, the IV SWC RLS algorithm is
given by

eCL;N�1;k = �XH
L (k) eR�HL;N�1;k�1

eGL;N�1;k = �Y H
L (k) eR�1L;N�1;k�1

�1L (k) = 1� eGL;N�1;kXL(k)

�
p
L;N�1(k) = d(k) +WL;N�1;k�1XL(k)

�L;N (k) = �
p
L;N�1N (k)

WL;N;k = WL;N�1;k�1 + �L;N (k) eGL;N�1;k

eR�1L;N;k = eR�1L;N�1;k�1 � eCH
L;N�1;kN (k)

eGL;N�1;k

(22)

DL;N;k = �XH
N (k�N+1) eR�HL;N;k

PL;N;k = �Y H
N (k�N+1) eR�1L;N;k

�L;N (k) = 1� PL;N;kXN (k�N+1)

�L;N(k) = d(k�N+1) +WL;N;kXL(k�N+1)

�sL;N�1(k) = �L;N (k)�
�1
L;N (k)

WL;N�1;k = WL;N;k + �sL;N�1(k)PL;N;k

eR�1L;N�1;k = eR�1L;N;k �DH
L;N;k�

�1
L;N (k)PL;N;k :

From, the IV SWC RLS algorithm described above, we
can now derive the corresponding fast version called the
IV SWC FTF algorithm.

3.3 THE IV SWC FTF ALGORITHM

In what follows, we will only give the equations of the
prediction part of IV SWC FTF algorithm. Details
about the complete algorithm can be found in [4]. The
IV SWC FTF algorithm uses two prediction problems,
one associated with the input signal x(k) with y(k) be-
ing an IV (AL;N;k and BL;N;k are the corresponding
forward and backward prediction �lters) and the other
associated to the signal y(k) with x(k) as the IV (AL;N;k
and BL;N;k being the forward and backward prediction
�lters). The prediction part IV SWC FTF algorithm is

given by

2
4
eCLp;N;k eGLp;N;k

AL;N;k AL;N;k
�1Lp (k) �

�1
L;N (k)

3
5 = FU

2
664
eCL;Nm;km eGL;Nm;km

AL;Nm;km AL;Nm;km
�1L (km) ��1L;Nm(km)

XLp (k) YLp (k)

3
775

2
4
eCL;Nm;k eGL;Nm;k

BL;N;k BL;N;k

�1L (k) �L;N (k)

3
5 = FD

2
664

eCLp;N;k eGLp;N;k

BL;Nm;km BL;Nm;km

�1Lp (k) �L;Nm(km)

XLp (k) YLp (k)

3
775

2
4DLp;Np;k PLp;Np;k
AL;Nm;k AL;Nm;k
�Lp (k) ��1L;Nm(k)

3
5 = FU

2
664
DL;N;km PL;N;km
AL;N;k AL;N;k
�L(km) ��1L;N (k)

XLp (kN ) YLp(kN )

3
775



2
4 DL;N;k PL;N;k
BL;Nm;k BL;Nm;k

�L(k) �L;Nm (k)

3
5 = FD

2
664
DLp;Np;k PLp;Np;k
BL;N;k BL;N;k

�Lp (k) �L;N (k)
XLp (kN ) YLp (kN )

3
775
(23)

where Lp = L+1; Np = N+1; Lm = L�1; Nm = N�1,
km = k�1; kN = k�N+1, �L;N (k) and �L;N (k) are
respectively the forward and backward prediction error
energies FU and FD are transformations de�ned in [4].
The computational complexity of the prediction part IV
SWC FTF algorithm is 20L operations per sample.

3.4 THE COMPLETE ALGORITHM

The last step consists in using the displacement struc-
ture of the inverse covariance matrix

eR�1L;k =

� eR�1Lm;k 0

0 0

�
+BT

Lm;N;k
��1Lm;N;k(k)B

�

Lm;N;k

=

�
0 0

0 eR�1Lm;km
�
+ATLm;N;k�

�1
Lm;N

(k)A
�

Lm;N;k
: (24)

Hence, using the fact that

�
p
L(k) =

h
�
pH

Lm
(k) �

iH
=
h
�p

�

(k) (1��) (�pL(km))
H

1:Lm

iH
;

it is easy to show

lHL(k) =
�
0 (1��) HLm(km)

�
+ (25)

��1Lm;N (k)ALm;N;k�
p�

L (k)A
�

Lm;N;k
;�

 Lm(k)
0

�H
= lHL (k) � ��1Lm;N (k)BLm;N;k�

p�

L (k)B
�

Lm;N;k
:

The solution to (4) is computed e�ciently with (25) and
requires the updating of the forward and backward pre-
diction quantities via the prediction part of the IV SWC
FTF algorithm. The generation of the IV needs 2M op-
erations for the �ltering part and 6M operations if one
uses the prediction part FTF algorithm for the updating
of the prediction �lter. Note that if L > M andM is the
optimal prediction �lter order of the input signal, then
one could use the prediction �lter computed in the IV
SWC FTF algorithm. This allows the generation of the
IV inM operations per sample (just �ltering the predic-
tion error through AM (z�1; k)). Note, that in this case,
a prediction part IV SWC FTF algorithm of order M
su�ces. Combining these results with (5)-(10), we get
the IVFAP algorithm. When L < M , the computational
complexity of the IVFAP algorithm is 2N + 28L+ 8M
operations per sample for the relaxed version (� 6= 1)
and 2N + 22L+8M operations per sample for the non-
relaxed form (� = 1). When L � M , the complexities
are respectively 2N + 8L + 21M and 2N + 2L + 21M
operations per sample.
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Figure 2: Comparison of the IVFAP and FAP algo-
rithms.

4 SIMULATION

In Fig. 2, we give the learning curves (averaged over 128
samples) of the IVFAP and FAP algorithms for an input
which is a highly correlated signal, N = 256, L = 24,
M = 4 and � = :999 (we used a stabilized FTF with
E0 = 10). A sudden variation of the optimal �lter arises
at k = 9900. White output noise has been added so that
SNR=20 dB. As one can see, the IVFAP algorithm is
more robust to noise ampli�cation than the FAP algo-
rithm.

5 CONCLUDING REMARKS

Due to its numerical error propagation dynamic, the IV
SWC FTF algorithm is unstable. One way to overcome
this problem is to restart the algorithm whenever insta-
bility has been detected. The stabilization of the new
algorithm using a feedback mechanism is the subject of
our ongoing research.
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