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ABSTRACT

In this paper a new block adaptive DFE implemented
in the frequency domain is derived. The new algorithm
is suitable for rejecting ISI due to multipath echoes, es-
pecially to wireless transmission systems which involve
channels with long impulse response. The novel idea is
to use tentative decisions properly derived by minimiz-
ing a frequency domain criterion. The algorithm has a
steady-state performance which is practically identical
to that of the symbol-by-symbol DFE. At the same time
it o�ers a faster convergence rate and substantial sav-
ings in complexity. Additionally, the level of the steady-
state MSE achieved by the algorithm is insensitive to the
length of the block. Thus the new algorithm allows a
trade o� between complexity and processing delay with-
out a�ecting performance.

1 INTRODUCTION

An important problem encountered in many wireless
transmission systems is the so-called multipath phe-
nomenon. In most cases this phenomenon introduces se-
vere intersymbol interference (ISI) which must be drasti-
cally eliminated in order to permit any useful transmis-
sion at all. The problem becomes even more important
in cases where the involved channel has a relatively long
impulse response. Typical applications of the kind are
multipoint multichannel distribution systems (MMDS),
very high speed local distributions systems, digital TV
terrestial broadcasting systems etc. In all these appli-
cations the impulse response of the multipath channel
spans a time interval equal to several symbol periods.
In some cases the involved channel impulse response is
very long, in particular the causal part which may last
up to several hundreds of symbol periods.
It is well established in the literature (e.g. [1], [4])

that ISI introduced by channels of the above type can
be e�ectively rejected using adaptive Decision Feedback
Equalizers (DFE). However the implementation of long
DFEs in today's available hardware is a very di�cult
task. A possible way to cope with this di�culty is to
use block adaptive equalizers preferably implemented
in the frequency domain. Frequency domain adaptive
(FDA) �lters have been extensively studied in the liter-
ature (e.g. see [2], [3]). As compared to the sample-by-

sample adaptive �lters they exhibit lower complexity,
faster convergence and equivalent steady state perfor-
mance. However most of the existing and well-known
FDA �lters are suitable only for linear equalization (e.g.
FLMS algorithm in [2]). As shown in [4] linear equal-
izers may exhibit poor performance in channels of the
above type and hence they are disquali�ed from being
used in the corresponding applications.

An attempt for a frequency domain block DFE was
presented in [4] and the technique developed there en-
joys the advantages of FDA schemes, i.e. ease of im-
plementation, modularity, very low complexity and fast
convergence. However in the algorithm of [4], for rea-
sons of computational e�ciency, the heading part of the
involved feedback �lter is truncated by a fraction of the
block length. Due to this fact, if strong near echoes
are present in the causal part of the channel impulse re-
sponse, the performance of the algorithm is inferior to
that of the symbol by symbol DFE.

In this paper a new block adaptive DFE implemented
in the frequency domain is developed. The main novelty
in the developed algorithm is to use properly derived
tentative decisions. These tentative decisions, corre-
sponding to the current block, are provided beforehand
by a modi�ed version of the block DFE minimizing a
cost function in the frequency domain. The tentative
decisions enter the �ltering and the updating part of a
full length block DFE implemented in the frequency do-
main. Note that most part of the computations needed
in this part have already been done in the �rst part.
The algorithm has a steady-state performance practi-
cally identical to that of the symbol-by-symbol DFE and
remarkably faster convergence rate. It o�ers a exibility
in the choice of the block length and its complexity is
substantially lower as compared to the symbol by sym-
bol DFE.

The new Tentative Decisions based Block DFE (TDB-
DFE) is derived in Section 2 while simulation results ver-
ifying its performance are presented in Section 3. The
notations used in the paper is as follows. In the time
domain: scalar variables, vectors, and matrices, are de-
noted respectively by lower case letters, lower case bold,
and upper case letters. In the frequency domain: vec-
tors are given in bold upper case letters, and matrices
are denoted by calligraphic upper case letters.



2 THE TDB-DFE ALGORITHM

2.1 Problem Description

Due to the multipath phenomenon the received signal
consists of several components with each one being a
scaled, delayed and phase shifted version of the original
transmitted signal. Notice that in most of the applica-
tions at hand the precursor part of the channel's impulse
response is in general much shorter and of less energy
as compared to the postcursor part. The same holds for
the impulse response of the inverse channel. Indeed, as
it was shown in [4], this response is mostly extented to
the postcursor direction spanning a time interval much
longer than the respective part of the impulse response
of the direct channel. Note also that quite often the
direct channel spectrum exhibits very deep nulls (as in
cases of strong far echoes). The above explain intuitively
why linear equalizers are in general unsuitable for the
applications of interest. On the contrary DFEs match
perfectly with the above characteristics. Indeed, the ISI
caused by the long causal part of the impulse response
can be drastically eliminated by a long Feedback (FB)
�lter. On the other hand the small remaining amount of
ISI due to the anticausal part may be e�ectively reduced
using a relatively short Feedforward (FF) �lter.
To proceed to our derivation let us �rst recall the

conventional symbol-by-symbol DFE described by the
following equations

y(n) = aTM (n)xM (n+M � 1) + bTN (n)dN (n� 1) (1)
d(n) = ffy(n)g (2)
e(n) = y(n)� d(n) (3)
aM (n+ 1) = aM (n) + 2�ax�M (n+M � 1)e(n) (4)

bN (n+ 1) = bN (n) + 2�bd�N (n� 1)e(n) (5)

where fxg and fdg denote the equalizer's input and
decision sequences respectively. Vector dN (n � 1) =
[d(n � 1) . . . d(n � N)]T and vector xM (n +M � 1) is
de�ned in a similar way. Vectors aM (n) and bN (n) de-
note the estimates at time n of the M � th order FF
�lter and the N � th order FB �lter respectively. ff�g
in Eq. (2) stands for the decision device function.
Our aim is to get a block of decisions at a time, say

Q decisions, where Q � N . The FF and FB �lters will
be updated every Q steps. Let us �rst derive a block
formulation of the DFE equations, i.e.

yQ(n+Q� 1) = XQ�MaM (n) +DQ�NbN (n) (6)
dQ(n+Q� 1) = ffyQ(n+Q� 1)g (7)
eQ(n+Q� 1) = yQ(n+Q� 1)� dQ(n+Q� 1) (8)

aM (n+Q� 1) = aM (n) + 2�aXH
Q�MeQ(n+Q� 1) (9)

bN (n+Q� 1) = bN (n) + 2�bDH
Q�NeQ(n+Q� 1) (10)

where

XQ�M =

2
64

x(n+M +Q� 2) . . . x(n+Q� 1)
...

. . .
...

x(n+M � 1) . . . x(n)

3
75

and

DQ�N =
�
D1
Q�Q�1 D2

Q�N�Q+1

�
(11)

with

D1
Q�Q�1 =

2
64

d(n+Q� 2) . . . d(n)
...

. . .
...

d(n� 1) . . . d(n�Q+ 1)

3
75

D2
Q�N�Q+1 =

2
64

d(n� 1) . . . d(n+Q�N � 1)
...

. . .
...

d(n�Q) . . . d(n�N)

3
75

If yQ(n+Q � 1) were available then, according to (7),

vector dQ(n+Q� 1) would be the one with the short-
est euclidean distance from yQ(n + Q � 1) and would

contain the Q detected symbols (decisions) of the cur-
rent block. However vector yQ(n + Q � 1) cannot be

computed directly from (6) since matrix DQ�N con-
tains unknown decisions, speci�cally all d(k) for k =
n; . . . ; n + Q � 2. All these unknown decisions lie in
the upper left Q � 1 � Q � 1 triangular part of ma-
trix D1

Q�Q�1. Due to this fact the well studied block

adaptive techniques [3], which apply perfectly for linear
equalizers, are not directly applicable in the DFE case.

2.2 Derivation of the TDB-DFE Algorithm

As mentioned in Section 1 the main idea is to use
tentative decisions in place of the unknown decisions.
The tentative decisions will be derived via a mini-
mization procedure in the frequency domain. To pro-
ceed further let us partition the FB �lter as bN (n) =

[b1TQ�1 b
2T
N�Q+1]

T . Using this partitioned form in (6) we
obtain

yQ(n+Q� 1) = y
p

Q(n+Q� 1) +D1
Q�Q�1b

1
Q�1 (12)

where

y
p

Q(n+Q� 1) = XQ�MaM (n) +D2
Q�N�Q+1b

2
N�Q+1

(13)
is the part of yQ(n + Q � 1) which is based on known
quantities only and therefore it can be computed. Note
that tentative decisions could be obtained by simply
passing y

p

Q(n+Q�1) through the decision device. How-

ever in such a case the available information is not fully
exploited. Next the error vector corresponding to the
current block can be written as

eQ(n+Q� 1) = y
p

Q(n+Q� 1) +

BQ�2Q�1d2Q�1(n+Q� 1)� dQ(n+Q� 1)(14)

where

BQ�2Q�1 =

2
664

0 b1 . . . bQ�1 0 . . . 0
0 0 b1 . . . bQ�1 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 b1 . . . bQ�1

3
775

Note that the matrix-by-vector product of the right
hand side of (12) is now written in an equivalent repre-
sentation which reveals the involved linear convolution
operation. Before getting into the frequency domain we



append Q zeros at the end of vectors eQ(n+Q�1) and
y
p

Q(n+Q�1) (changing their size to 2Q) and we de�ne

the following circulant matrix

Bc
2Q = circulant

�
[0TQ+1 bQ�1 . . . b1]

T
	

(15)

i.e. matrix Bc
2Q is a 2Q � 2Q circulant matrix whose

�rst column is the one given in (15). Now we can write
(14) as

�
eQ(n+Q� 1)

0Q

�
=

�
y
p

Q(n+Q� 1)

0Q

�
+

C1
2Q

�
Bc
2Qd2Q(n+Q� 1)� d2Q(n+Q� 1)

�
(16)

where C1
2Q is a 2Q� 2Q constraint matrix which is im-

posed in order to keep only the linear convolution part,
and is de�ned as

C1
2Q =

�
IQ�Q 0Q�Q
0Q�Q 0Q�Q

�

From (16) we can easily get

�
eQ(n+Q� 1)

0Q

�
=

�
y
p

Q(n+Q� 1)

0Q

�
+

C1
2QB

1
2Qd2Q(n+Q� 1) (17)

where B1
2Q = Bc

2Q � I2Q. Next applying the Fourier

operator (denoted as F ) to both sides of (17) we obtain

E2Q = Y
p

2Q + F � C1
2Q � F

�1 � B1
2Q �D2Q (18)

Next we minimize the total squared error within the
block with respect to the decision vector and then we
use the derived "decisions" in order to compute the un-

known part of equation (12). Setting
@(EH

2QE2Q)

@D2Q

= 0

and after some algebra we obtain

DH
2Q �

�
B1H
2QF

�HC1
2QF

HB1
2Q

�
= �Y pH

2QFC
1
2QF

�1B1
2Q

If the constraint matrix C1
2Q was invertible we could

write

D2Q = �B1
2QY

p

2Q (19)

The constraint matrix can be made invertible by sub-
stituting every zero element in its main diagonal with a
very small number �. Note that � introduces only a neg-
ligible error since we are free to choose a very small value
for it. Thus from (19) and taking inverse FFT ofD2Q we
obtain Q decisions for the current block, which could be
used as tentative ones. Note however that at the same
time we get Q decisions corresponding to the previous
block. However these decisions are already known. To
exploit this knowledge we split the 2Q-length decision
vector into two components as

d2Q(n+Q� 1) =

�
dQ(n+Q� 1)

0Q

�
+

�
0Q

dQ(n� 1)

�

(20)

By substituting (20) in (17) and performing the above
minimization procedure with respect to the unknown
component of the decision vector in (20) we get

D̂2Q = �B1
2QŶ 2Q (21)

where Ŷ 2Q is the IFFT of vector

�
y
p

Q(n+Q� 1)

0Q

�
+C1

2Q �B
1
2Q �

�
0Q

dQ(n� 1)

�
(22)

Taking inverse FFT of D̂2Q and using the resulting de-
cisions in (12) we can compute yQ(n+Q� 1). Passing
this vector through the decision device we obtain the
decisions which are considered tentative and enter the
�ltering and updating part of the full length TDB-DFE.

2.3 Summary of the TDB-DFE algorithm

Filtering Part:
1. Compute:
y
p

Q(n+Q� 1) = XQ�MaM +D2
Q�N�Q+1b

2
N�Q+1

2. De�ne: B1
2Q = diag

�
F [�1 0TQ bQ�1 . . . b1]

	
Compute: D̂2Q = �B1

2Q � Ŷ 2Q

with Ŷ 2Q as de�ned in (22).

Compute: d̂Q(n+Q� 1) = [IQ 0Q]F
�1D̂2Q

3. Compute the tentative decisions ~dQ(n + Q � 1) by

passing the sum y
p

Q(n+Q� 1) + D̂1
Q�Q�1b

1
Q�1

through the decision device.
4. Compute the �nal decisions dQ(n+Q�1) by passing

the sum y
p

Q(n+Q� 1) + ~D1
Q�Q�1b

1
Q�1

through the decision device.

The �ltering part can be implemented in the frequency
domain using either Overlap-Save or Overlap-Add sec-
tioning methods. It should be noticed that the tentative
decisions derived using the suggested minimization can
be considered as initial values for a nonlinear recurrent
procedure. This issue is further investigated in a forth-
coming paper.

Updating Part:

1. Compute: E2Q(k) = Ff[0TQ e
T
Q(n+Q� 1)]T g

and E2N (k) = Ff[0T2N�Q e
T
Q(n+Q� 1)]T g

2. Compute: X2Q(k) =
diagfF [x(n�Q+M � 1) . . . x(n+Q+M � 2)]g
and D2N (k) =
diagfF � [d(n� 2N +Q� 1) . . . d(n+Q� 2)])g
3. Compute: P x

2Q(k) =

�1P
x
2Q(k � 1) + (1� �1)X

�

2Q(k)X2Q(k) � 12Q

and P d
2N (k) =

�2P
d
2N (k � 1) + (1� �2)D

�

2N (k)D2N (k) � 12N
4. Compute the matrix step size for each �lter
Ma

2Q(k) = �1 � diagf[p
�x
2Q;1(k) . . . p�x2Q;2Q(k)]g and

Ma
2N (k) = �2 � diagf[p

�d
2N;1(k) . . . p�d2N;2N(k)])g

5. Update the FF and FB �lters
A2Q(k + 1) =
A2Q(k) + 2FCa

2QF
�1Ma

2Q(k)X
�

2Q(k)E2Q(k)



B2N (k + 1) =
B2N (k) + 2FCb

2NF
�1Mb

2N(k)D
�

2N (k)E2N (k)

The updating part above has been given in a more de-
tailed form in order to show the use of the involved ma-
trix step sizes. k denotes the current block. Constraint
matrices Ca

2Q and Cb
2N are de�ned in a similar way as

matrix C1
2Q in the previous subsection. They have IM

and IN respectively in their upper left parts and zeros
elsewhere. 12Q is a 2Q length vector with unity ele-
ments and 12N is de�ned accordingly. A good choice
for �i; i = 1; 2 is 1��i. The initial vectors for P

x
2Q and

P d
2N are vectors with unity elements.

3 Simulation Results

The experiments for testing the TDB-DFE algorithm
were carried out on a multipath channel with an impulse
response consisting of 7 echoes. The amplitudes of the
echoes were �21dB, �16dB, �10dB, �14dB, �18dB,
�20dB; and �8dB and their corresponding time delays
were equal to �17Ts, �11Ts, 25Ts, 93Ts, 151Ts, 180Ts,
and 235Ts respectively, where Ts was the symbol period.
The phases of the echoes were chosen randomly. The
input to the channel was a QPSK sequence while at the
output white complex gaussian noise was added.
In Fig. 1 the TDB-DFE is compared with the conven-

tional LMS algorithm and the symbol-by-symbol DFE
(as given by Eqs. (1)-(5)). The lengths of the FF and
FB �lters were equal to 32 and 256 respectively. The
block length for TDB-DFE was 64. A common step size
was used for all algorithms. The two upper MSE curves
correspond to LMS 256 and 384 coe�cients. We can
see that there is an improvement in performance if we
use 384 instead of 256 coe�cients, but LMS still cannot
achieve the performance of DFE. It should be noticed
is that the curves corresponding to TDB-DFE and the
conventional DFE are practically the same. In this ex-
periment TDB-DFE was implemented with �xed step
sizes in the updating part.
In Fig. 2 the symbol-by-symbol DFE is compared

with the TDB-DFE (with block length equal to 64 and
matrix-step size in the updating part). As expected
TDB-DFE exhibits a faster convergence rate as com-
pared to DFE for the same misadjustment.
Finally in Fig. 3 we have the MSE curves of TDB-

DFE for three di�erent block sizes, namely 64, 128, and
224. The curves are practically the same showing that
the size of the block does not a�ect the performance of
the new algorithm.
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