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ABSTRACT

This paper presents a method for reconstructing missing
regions in colour images. A multichannel median model
is proposed as the underlying image model and a statist-
ical framework is employed to generate sampled realisa-
tions of the missing data. The nature of the model leads
to a posterior expression for the missing data that does
not involve an easy to manipulate multivariate probab-
ility distribution. Therefore, the problem of sampling
is solved using a numerical approach. Results are in-
cluded which show that this approach leads to excellent
reconstructions.

1 INTRODUCTION

The reconstruction of missing blocks of image data in
grey-scale images has been addressed in a number of
papers [5],[4] and [9]. These responded to the need to
reconstruct severe degradation that a combination of
the unstable �lm stock of early �lms and the process
of running a �lm through a projector causes. The res-
toration techniques developed are now being applied to
these movies in digital �lm archives.
The loss of blocks of data is also a problem in the

world of colour. Projection can damage a colour �lm
and errors that result in missing blocks of data can
arise during transmission and recording of digital and
analogue image data. Furthermore, in implementations
of MPEG-II that incorporate error concealment, small
blocks of missing data can be observed when random
errors are introduced into the bit stream. The need for
a method of reconstructing missing image data in colour
images is therefore evident.
Three further problems that are considered are the

choice of a colour space and excitation process and the
need for a model selection process to choose the appro-
priate support for the vector median model.

2 THE VECTOR MEDIAN MODEL

The image model that is used in this paper arises from
the vector median �lter, which is one of several mul-
tichannel �lters used successfully for noise reduction
in colour images [1], [10] and [6]. The vector median,

xmed, of a set of n-dimensional vectors, X = fxq : q =
1; : : : ; Ng, is de�ned as

xmed = arg min
xj2X

X
q

kxq � xjk (1)

where k � k is an Lp norm { the L2 norm was used to
obtain the results in this paper. When n equals 1, Equa-
tion 1 is equivalent to the median �lter.
It is proposed that a pixel in a colour image be mod-

elled as a vector median prediction of the pixel xk, based
on the set of pixels X0, in some neighbourhood of the
pixel. This is de�ned as

xk = arg min
xj2X

0

X
q;q 6=k

kxq � xjk+ ek (2)

where the error in the prediction, ek, is modelled by a
3-dimensional Laplacian excitation process.

2.1 The Laplacian Excitation Model

The n-dimensional Laplacian distribution used has the
form

Ln(0;C) =
j C�1 j

2n
exp(keTC�1k1) (3)

where C is the covariance matrix, j C�1 j is the determ-
inant of the inverse covariance matrix and k�k1 is the L1
norm, which sums the absolute values of the elements
of its vector or matrix argument.
A Laplacian model is chosen, as opposed to the stand-

ard Gaussian, because the errors observed from typ-
ical applications of vector median �lters to images are
distributed with the sharper peak and heavier tail of
the Laplacian. In the single channel case the median
is the maximum likelihood estimate of location for the
Laplacian[8].

3 SAMPLING FROM THE POSTERIOR

DISTRIBUTIONS

The process of reconstructing the missing data by
`sampling' requires the determination of the posterior
density for the missing data. It follows from Bayes rule
that this density is proportional to the likelihood of the



data multiplied by the prior for the covariance, as fol-
lows

p(z j y;C) / p(z;y j C)p(C) (4)

where z is the set of missing pixels and y is the set of
known pixels in the image and C is the covariance of
the excitation process.
By taking a uniform prior probability for C, the like-

lihood for the missing data in the image becomes pro-
portional to the posterior density for the missing data.
The likelihood, assuming that the residuals are i.i.d., is
given by

p(z;yjC) =

NY
i=1

p(ei) (5)

=
1

(23 j C�1 j)N
� (6)

exp(�k(e1; e2; : : : ; eN)
TC�1k1)

where fe1; e2; : : : ; eNg are the 3 � 1 error vectors cor-
responding to the N missing data points.

3.1 THE GIBBS SAMPLER

A Gibbs Sampler is used to draw samples for the missing
data [3]. This method is implemented such that it de-
composes the problem into a series of univariate draws
from the required marginal distribution. From an initial
guess for the missing data and for the variance (denoted
z0 and C0), the sampler proceeds iteratively according
to

z1iR
z1iG
z1iB

�
�
�

p(z0iR j y;C0; z0
�i; z

0
iG; z

0
iB)

p(z0iG j y;C0; z0
�i; z

1
iR; z

0
iB)

p(z0iB j y;C0; z0
�i; z

1
iR; z

1
iG)

9=
;8zi 2 z (7)

C1 � p(C0 j y; z1) (8)

where z�i is the set of missing pixels, excluding pixel zi.
The order in which the missing pixels are sampled for,

is such that, if possible, the missing pixel to be sampled,
does not appear in the support of the previously sampled
pixel. This is known to lead to faster convergence of the
Gibb's sampler [2].
The posterior distributions for the missing data are

determined according to the following method:
1. Choose one missing pixel in the image and set the

value of the red component to zero.
2. taking the set of those residuals in which the miss-

ing pixel in question plays a part in the calculation of
the prediction, calculate the probability in equation 6.
Store this result.
3. Increment the value of the red component of the

missing pixel by 0:01.
4. Repeat the previous two steps until the red com-

ponent is equal to 1 (assuming that the RGB values have
been scaled to lie between 0 and 1).

This method is used to form posterior distributions
for the R, G and B components of each missing pixel.
Samples from these distributions are then drawn using
the `transformation method'.

3.2 Sampling for the Variance

By assuming that the covariance matrix is diagonal - a
reasonable asumption in practice - the variance of the
excitation process of each channel can be drawn separ-
ately from a Gamma distribution, from which samples
can be drawn using the rejection method [7]. Taking one
channel and denoting its variance as, c, the derivation
of the distribution from which to sample is as follows

p(cje) / p(ejc)p(c) (9)

= c�N exp(�
kek1
c

) (10)

where p(c) is the prior for the variance. A non-
informative uniform prior for the variance is used here.
This distribution can be transformed into a Gamma

distribution with the following substitution

y =
kek1
c

(11)

which gives

p(yje) = p(cje)jdc=dyj (12)

= p(cje)
c

y
(13)

=
c�N+1 exp(�y)

y
(14)

/
yN�1exp(�y)

y
(15)

= yN�2exp(�y) (16)

This means that samples are drawn from

y � �(N � 1) (17)

and using equation 11, samples for c can be derived.

3.3 Subset Selection

An important part of the reconstruction method is a
model selection stage which precedes the sampling. This
proposes a number of di�erent mask shapes and chooses
the one that �ts the image best.
This choice is arrived at by searching for the mask

that gives the MAP (maximum a posteriori probabil-
ity) estimate. These would be adversely a�ected by the
missing data, so they are calculated using the known
data that surrounds the missing block.

3.4 Choice of Colour Space

The choice of the RGB colour space over the YUV space
in the development of the preceding sections was made
to simplify the explanation of the method. In fact, there



are two reasons why the YUV space might be preferable
to the RGB space. The distance between YUV colour
vectors corresponds better to the di�erence in colour
precieved by humans. In addition, the intensity or Y
channel of the YUV space is decorrelated from the U
and V channels. This ties in better with the use of a
diagonal covariance matrix, which implies that all the
channels are decorrelated.

Nevertheless, the results presented in the next section
are achieved using the RGB space, because it has one
advantage over the YUV space. Any R, G or B value
that lies in the speci�ed range will lead to a valid col-
our. This is not the case for the YUV space where some
sampled values do not correspond to actual colours. The
problem can be overcome by clipping the resulting RBG
values so that they �t in the required range.

4 RESULTS

The results presented here feature the `clown' image
(Figure 1), from which blocks of data are removed and
replaced with random valued colour pixels. These blocks
are then reconstructed using a number of methods. The
�rst of these is the technique described in the paper.
The second also follows the framework described in the
paper, but the vector median becomes the single channel
median and each colour channel is reconstructed separ-
ately. The �nal technique displaces a vector median
predictor one pixel at a time, from left to right, top to
bottom of the missing area, replacing each missing pixel
with the vector median prediction of that pixel. Only
one pass of the predictor is made.

The sampling and approaches can be seen to give
very good reconstructions { far better than the recurs-
ive application of the vector median predictor. The
false colouring that occurs with `marginal' methods
(those that treat each channel separately) can be seen
clearly in Figure 3. The multidimensional vector median
sampling approach su�ers much less from this, although
the sampling approach does lead to the occasional ran-
dom pixel being incorrectly coloured.

Generally the vector median reconstructions appear
much more pleasing. In areas of almost constant col-
our, the marginal method performs almost as well as the
vector median sampling method. This phenomenum is
elucidated by inspecting each of the RGB channels in
turn. They turn out to be regions of fairly constant
value, so the lack of information interchange between
the three levels is therefore not essential to the success
of the reconstruction.

The vector median sampling case is the slowest, tak-
ing 180 seconds with a nine point mask to do the 30
iterations usually needed to get to a converged distribu-
tion for each 6� 6 block. For some of the edge features
twice as many iterations were required. The longer time
needed to calculate a vector median in comparison to a
median means that this is slower than the marginal me-

dian method.

This compares with a marginal AR sampling ap-
proach which takes around 5 seconds to do each 6 � 6
block for each channel with a nine point mask. This
is 100 times faster than the full vector median tech-
nique and highlights the advantage of being able to per-
form multivariate draws for the missing data from a
known distribution. However, this approach also leads
to false colouring in the same way as the marginal me-
dian sampling approach.

The vector median recursive approach takes a fraction
of a second to do the all �fteen blocks. Although this is
by far the fastest method and is commonly used to solve
the missing data problem, it leads to very poor results.

All these times are quoted for programs running in C
on a Pentium PC 90 MHz machine.

5 CONCLUSION

This paper has presented a method for reconstructing
missing data in colour images. The results demonstrate
that the method reconstructs features and colours very
well and drastically improves on the recursive use of
vector median predictors. The use of a multidimensional
model reduces the occurrence of false colouring that is a
problem with reconstruction techniques that treat each
channel separately.

Current work is directed into developing faster meth-
ods of sampling and into studying the e�ect of using
fast algorithms for the calculation of the vector median.
Drawing samples for the full covariance matrix is also
being investigated. The technique has also been applied
successfully to reconstructing sequences of damaged col-
our images.

Figure 1: Original image and locations of missing blocks
of data (the edges of the squares are part of the missing
areas).



Figure 2: Reconstruction using vector median based
sampling.

Figure 3: Reconstruction using median based sampling
on each colour channel separately. Reconstructions with
noticeable false colouring are ringed.
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