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ABSTRACT

The application of maximum likelihood estimation and pre-

diction error methods on dynamical systems require that it

is possible to compute the innovations of the systems model

which more or less implies that it must be possible to in-

vert the system model. For nonlinear stochastic models this

can be very di�cult. In this contribution it is shown how

this can be done very e�ciently for a very rich class of non-

linear models by way of exact linearization. The method is

illustrated on two non-trivial examples.

1 INTRODUCTION

Identi�cation of nonlinear systems has attracted a lot of

interest, see e.g. [7] and [12], for an overview of identi�-

cation of nonlinear black-box models. Models of nonlinear

stochastic systems are, for example, estimated using a priori

knowledge about the system along with experimental data,

so called grey-box identi�cation, in [2]. Methods using mea-

sured input and output data for the identi�cation of nonlin-

ear stochastic models are described by, e.g, Bendat [1] and

Chen [3].

In this contribution we consider estimation of nonlinear

stochastic systems, i.e. systems where the inputs are white

but not measured. It is well-known that the maximum likeli-

hood (ML) principle provides estimates with nice statistical

properties, e.g. asymptotic e�ciency can be shown to hold

under very general assumptions. For a linear time-discrete

ARMA model

y(t) =
C(q)

A(q)
w(t)

where y(t) and w(t) are the output and white input respec-

tively and where C(q) and A(q) are unknown polynomials

in q
�1, the backward shift operator q�1w(t) = w(t� 1), ML

estimation amounts to inverting the model

e(t) =
A(q)

C(q)
y(t)

and minimizing the input e in some suitable norm which

depends on the probability density function (PDF) of w.

ML estimation of nonlinear stochastic systems also re-

quires that the system model is inverted. However, for non-

linear systems this is often a non-trivial task. The main

contribution of this paper is to show that there is a very rich

class of nonlinear dynamic models where the inversion can

be easily performed.

This paper will start with a short introduction to inver-

sion followed by a description of the class of models we are

considering. Conditions for stability and initial conditions

will be presented. Thereafter, a summary of the ML method

will follow where emphasis will be made on the way we are

calculating the likelihood. Finally, numerical examples and

parameter estimation results will be presented.

2 INVERSION

Let us �rst give some background to inversion of nonlinear

systems. The main condition for invertibility is a one-to-one

relationship between the input and the output. Inversion of

continuous time nonlinear systems and the relation to exact

linearization is considered in, e.g., [5]. Discrete time sys-

tems are less commonly commented on, although in [8] an

inversion algorithm is shown.

For a continuous time system, the traditional way of lin-

earization by feedback is based on taking the derivative of

the output function a number of times. In the discrete time

case we will instead consider di�erent time-shifts of the out-

put. Let us illustrate the inversion technique by a simple

example, see [8] for further details. Consider

x1(t+ 1) = �1x2(t) (1)

x2(t+ 1) = �2x2(t) + �3u
3
(t) (2)

y(t) = x1(t) (3)

where x1;2 are the states, u is the input, y is the output and

�i are parameters. We can calculate u from the output by

considering time-shifted values of y

y(t+ 1) = x1(t+ 1) = �1x2(t) (4)

y(t+ 2) = �1x2(t+ 1) = �1�2x2(t) + �1�3u
3
(t): (5)

Now, we can calculate u(t) from (5) as

u(t) =

�
1

�1�3
[y(t+ 2)� �1�2x2(t)]

�1=3

: (6)

However, since x2(t) is included in (6) the state has to be

updated which can be done as

x2(t+ 1) = (1�
1

�3
)�2x2(t) +

1

�1�3
y(t+ 2): (7)

Equation(7) is the result of inserting (6) into (2). Together,

(6) and (7) can be used to compute u from y. Notice that

we need y(t + 2) to compute u(t) and, hence, the �lter is

noncausal. For o�-line identi�cation purposes, however, this

is not a problem.



3 PARTITIONED NONLINEAR MODELS

We will now consider a class of models where the inverse can

be implemented in a more direct way than described in the

previous section. We consider the class of models where the

nonlinear system, P , can be partitioned into a linear and a

nonlinear part, see Figure 1. Thus, we can write the system

P as

P = L+N (8)

where L is the linear operator and N is the nonlinear opera-

tor. It can be noted that both L and N can be either static

or dynamic, independent of each other. This model structure

is naturally imposed by the Volterra functional representa-

tion of nonlinear systems but may also re
ect the structure

of actual systems. In [1], examples of partitioned models are

shown.
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Figure 1: Block diagram of the parallel system. The states

of L and N are represented by � and x. The outputs of the

linear and the nonlinear part are represented by v and s,

respectively.

As stated by Doyle et. al. [4], we can also write P as

P = L(I + L
�1
N) (9)

provided that the inverse of L exists. Furthermore, the in-

verse of P can be expressed as

P
�1

= (I + L
�1
N)
�1
L
�1

(10)

provided that the inverse of (I + L
�1
N) exists. The exis-

tence of an inverse of the linear operator L is very easy to

analyze and implement but it may not be easy to comment

on the general existence of the inverse of (I + L
�1
N), [4].

However, if the above inverses exist then the inverse of P

can be implemented as shown in Figure 2. As seen in Figure

2, the system can be inverted without explicitly inverting

the whole system. It is su�cient to invert the linear part

and �lter the data through the nonlinear feedback system in

Figure 2. This fact can now be explored in ML estimation.

Remark: In some special cases L can represent a simple

and easily inverted nonlinear system.

4 STABILITY

Assuming invertibility there are two major concerns about

the inverse system in Figure 2, namely stability and expo-

nential forgetting of unknown initial conditions. Since, in

general it is impossible to get consistent estimates of the

initial states it is necessary that transients due to unknown

initial die out su�ciently fast. Exponential forgetting is im-

portant for the convergence of the ML estimator.
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Figure 2: Realization of the nonlinear model inverse. The

states of L�1 and N are represented by � and z. The output

of the nonlinear part is represented by ŝ and the input to

L
�1 by v̂.

4.1 The Small Gain Approach

The stability of nonlinear systems is dealt with in terms of

`p stability where p 2 [1;1]. First we will restate some

de�nitions and stability results given in [13].

De�nition: Let S denote the linear space of all sequences

fxigi�0, then for p 2 [1;1) we can de�ne

`p =

(
x 2 S :

1X
i=0

jx(i)j
p
<1

)
and (11)

`1 = fx 2 S : x is a bounded sequenceg : (12)

Further on, `p is a subspace of S for each p 2 [1;1] and we

can de�ne the norms

kxkp =

"
1X
i=0

jx(i)j
p

#1=p
; 8x 2 `p (13)

Now suppose X is a set and R is a binary relation on X.

Then, according to [13], x 2 X is related to y 2 X if the

ordered pair (x; y) 2 R. R is `p stable if

(x; y) 2 R; x 2 `p ) y 2 `p (14)

and R is `p stable with �nite gain and zero bias if it is `p
stable and if there exists a �nite constant 
p such that

(x; y) 2 R; x 2 `p ) kykp � 
pkxkp (15)

where the `p gain of R is de�ned as


p(R) = inff
p : provided (15) holdsg (16)

The small gain stability approach, [13], is providing a nec-

essary condition for the inverse system to be stable. In this

case we consider the system in Figure 2 and suppose that

both L�1 andN are causal and `p stable with �nite gains and

zero bias. We also denote 
p1 = 
p(L
�1) and 
p2 = 
p(N).

Under these circumstances the system in Figure 2 is `p sta-

ble, by the small gain stability approach, if


p1
p2 < 1: (17)

It should be noted that this condition can be quite conser-

vative in some cases.



4.2 Dependence of Unknown Initial Conditions

When a sequence yM = (y(1); :::; y(M)) is used to compute

an estimate of the input sequence, the states of the inverse

system are unknown. Therefore, the output will not be the

exact inverse of the input for all samples. Here, we will

brie
y describe how the conditions for when the transients

will die out boil down to the stability conditions of a linear

time-varying (LTV) system.

To analyze the dependence of the unknown initial condi-

tions of the inverse model we consider the di�erences

�(t) = �(t)� �(t); �(t) = z(t)� x(t) (18)

�(t) = s(t)� r(t); �(t) = ŵ(t)� w(t) (19)

where �(t), x(t) and �(t), z(t) are the states of the linear

and the nonlinear system for the forward and the inverse

system. The input to the forward system and the output of

the inverse system are denoted w(t) and ŵ(t). Finally, the

output of the nonlinear parts are denoted by s(t) and ŝ(t),

see also Figure 1 and 2 where the states of each block are

given within parenthesis. In this section we assume that the

parameters of the forward and the inverse system are the

same such that all the di�erences in (18) and (19) should go

to zero.

It can be shown, although omitted here due to space lim-

itations, that the state equations of (8) and (9) (see also

Figure 1 and 2) can be used to describe a dynamical system

based on the di�erences � and � as

�(t+ 1) = �(�(t); �(t)) (20)

�(t+ 1) = �(�(t); �(t)): (21)

Hence, we get a system which has no driving term but typ-

ically has nonzero initial states due to unknown initial con-

ditions. Clearly, we want the di�erences due to unknown

initial conditions to vanish. Thus, we want the origin to be

a stable equilibrium of the system. A problem is that it may

be hard to analyze the stability of (20) and (21) since they

are nonlinear functions.

However, to specify the conditions for a uniformly expo-

nentially stable system we can use the following fact: If the

linearized system has a uniformly exponentially stable equi-

librium at the origin, then the nonlinear system is uniformly

exponentially stable at the origin, [13].

We can describe the linearized system by

�(t+ 1) = ��(t)(0; 0)�(t) + ��(t)(0; 0)�(t) (22)

�(t+ 1) = ��(t)(0; 0)�(t) + ��(t)(0; 0)�(t) (23)

where �x and �x denotes the derivative with respect to x,

(x = �(t) or �(t)). Thus, the studied class of models need

a stable linearization (22, 23). Exponential forgetting, im-

portant for the ML estimator, means that the initial errors

are forgotten with a factor �t where 0 � � < 1. This is im-

plied by an exponentially stable system (22, 23). It should

be noted that (22) and (23) represents a linear time varying

(LTV) system and the stability of such a LTV system can

be analyzed by regular methods [11]. However, the impor-

tant thing here is the condition of an exponentially stable

linearization of the nonlinear system (22, 23) to obtain van-

ishing initial errors and a converging ML estimator.

Remark: If the system N is a linear time invariant system

then the linearized system, of course, reduces to a linear time

invariant system.

5 MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood (ML) identi�cation method is a

very general identi�cation method. Evaluating the likelihood

exactly is possible when the model is linear in the noises, see

[9], or when the measurements are invertible with respect to

the input noises, [2].

The principle of the ML method is based on treating the

observed variable yM = (y(1); : : : ; y(M)) as a random vari-

able with a probability density function (PDF) �y(y j � ).

The probability of y thus depends on a parameter vector �.

To estimate � from an observation of y the method chooses

a � which maximizes the likelihood

L(� j y) = �y(y j � ) (24)

for one sample of y. In general, the measured output y is not

independent from sample to sample. However, if we consider

M observations, then, by repeated use of the multiplication

rule for conditioned probabilities, we get

L(� j y) = �y(y(M) j y
M�1

):::�y(y(2) j y(1))�y(y(1)); (25)

where yM�1 denotes all observations from y(1) up to y(M �

1). As shown in [6], �y can be computed as

�y(y j � ) = �w(W (y))

����d[W (y)]

dy

���� ; (26)

in the scalar case, where �w is the PDF of the input noise

w and j � j denotes determinant. In (26), W denotes the

inverse of the relation between the input and the output.

An important part of this paper is the use of the inverse to

calculate the likelihood.

We can now rewrite (25) as

L(� j y) =

MY
i=1

�w(W (y(i))

����d[W (y(i))]

dy(i)

���� : (27)

Maximizing the likelihood is the same as minimizing the

negative logarithm of L(� j y) and the cost function, assum-

ing Gaussian inputs, becomes

V (�) =

MX
i=1

�
1

2
ŵ(i)

2
� loge

����d[W (y(i))]

dy(i)

����
�
: (28)

Finally, by minimizing V (�) we get the ML estimate of � as

�̂ = argmin
�

V (�) (29)

Notice the log term which does not appear for models where

the inverse is computed as

w(t) = y(t)� f(y(t� 1); y(t� 2); : : : ):

6 NUMERICAL EXAMPLES

We will show two di�erent numerical examples. In these ex-

amples the parameters of the models were estimated and the

inverse of these systems were implemented using the scheme

given in Figure 2. One hundred input realizations were used

for each example, each containing 1000 samples (M = 1000).



First, consider a discrete time system with a �rst order

transfer function in parallel with an exponential nonlinear-

ity and a Gaussian input as shown in Figure 3. Using this

scheme the cost function is computed as

V (�) =

MX
i=1

�
1

2
ŵ(i)

2
� loge

���� 1

1� (1� dŵ(i))ce�dŵ(i)

����
�
(30)

where ŵ is computed according to Figure 2.

+ 
y

cw(i)e�dw(i)

1 +Bq�1

1 + Aq�1

w

Figure 3: Block diagram of the �rst numerical example.

The four parameters, � = (A;B; c; d)T of the system

were simultaneously estimated using the above described ML

method. The results are shown in Table 1 where the actual

parameter value is shown as the true value �0. The mean of

the 100 parameter estimates are presented as mean(�̂) and

the estimated standard deviation is denoted std(�̂).

Table 1: Parameter estimation results.

True value �0 mean(�̂) std(�̂)

A 0.90 0.90 0.03

B 0.60 0.60 0.06

c 0.70 0.71 0.05

d 0.20 0.20 0.04

The second example has a dynamic nonlinear part al-

though the linear part is the same as in the �rst example.

The nonlinear part is described by

x(t+ 1) = ax(t) +
e(t)

1 + be2(t)
(31)

y(t) = x(t) + ce(t)e
�de2(t)

; (32)

thus, � = (a; b; c; d; A;B)T were estimated, results are pre-

sented in Table 2, using the cost function

V =

MX
i=1

�
1

2
ŵ(i)

2
� loge

���� 1

1 + (1 � 2cdŵ(i))ce�dŵ2(i)

����
�
:

(33)

It can be concluded that the estimation procedure works

very well for these models which at �rst glance appear very

di�cult to apply ML estimation on. A similar method, but

without special notice taken to partitioned models, has also

been successfully implemented on a nonlinear model gener-

ating EEG-like activity [10].

Table 2: Parameter estimation results.

True value �0 mean(�̂) std(�̂)

a 0.80 0.79 0.03

b 1.00 1.01 0.20

c 0.70 0.71 0.06

d 0.20 0.20 0.03

A 0.90 0.89 0.02

B 0.60 0.59 0.04

7 CONCLUSION

In this contribution we have shown how ML estimation can

be applied to invertible nonlinear models. A class of parti-

tioned nonlinear models has been considered. The stability

of the inverse of such systems were given by the criterion of

the small gain approach and the conditions concerning ini-

tial conditions boiled down to the stability of a linear time-

varying system. The ML criterion was presented for our

application and �nally the method was tested on numerical

examples.
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