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ABSTRACT

Subspace �tting methods have grown popular for pa-

rameter estimation in many di�erent application, for ex-

ample sensor array signal processing, blind channel iden-

ti�cation and identi�cation of linear state space systems.

Here we show that similar procedures can be used even

for data models where the noise free signal gives a full

rank contribution to the covariance matrix. A general

weighting is introduced and the optimal weight matrix

is given together with the resulting asymptotic covari-

ance of the parameter estimates. The method works well

when the number of dominating eigenvalues still is fairly

small. As an example, we study estimation of direction

and spread angle of a source subject to local scattering,

using a uniform linear array of sensors. As the algorithm

is computationally expensive, the results are not primar-

ily intended for practical implementations, rather they

show the theoretical limit for any estimation procedure

that uses a low rank approximation of the covariance

matrix.

1 PRELIMINARIES

We describe �rst a fairly general data model followed

by a couple of examples. Assume that y(t) is a real or

complex vector valued signal given by

y(t) = x(t) + n(t) (1)

where n(t) is spatially and temporally white Gaus-

sian noise with E[n(t1)n
�(t2)] = �2nI�(t1 � t2). Sup-

pose further that x(t) is a stochastic or determin-

istic quasi-stationary [5] signal with (for simplicity)

E[x(t)] = 0 and a covariance matrix E[x(t)x�(t)] =
Rx(�) which is a known function of �, the vector of

parameters of interest. The notation E is de�ned by

E[f(t)] = limN!1
1
N

PN
t=1 E[f(t)]. From (1), Ry =

E[y(t)y�(t)] = Rx(�) + �2nI.

In normal applications of subspace system identi-

�cation, Rx(�) is low rank, i.e., rank[Rx(�)] < m,

the dimension of x(t). Suppose instead that

rank[Rx(�)] = m, but the matrix is almost low rank in

the sense that at least one of the eigenvalues is signi�-

cantly smaller than the others.

One application, which will be used in the examples

below, is a model of the signal received at an antenna

array from a transmitting source in an environment

that introduces local scattering around the source, see

[1, 2, 9]. Assuming that the scattering is uniformly dis-

tributed around the nominal direction of arrival and the

antenna array is linear and uniform, it can be shown

that the received baseband signal is [3]

y(t) = s(t)v(t) + n(t) (2)

where s(t) is the transmitted waveform, v(t) is a com-

plex random vector approximately N
�
0;Rv(�; ��)

�
dis-

tributed, where

�
Rv(�; ��)

�
kl
� ej2�(k�l)� sin � sinc

� 2p
3
(k � l)��� cos �

�
(3)

� is the nominal direction of arrival, �� is the stan-

dard deviation of the angular spread and � is the ele-

ment separation in wavelengths. Thus, x(t) = s(t)v(t),
Rx(�) = �2sRv(�; ��) and the parameters to be esti-

mated are � = [�; ��]
T (�2s can be estimated using lin-

ear least squares). An example with a deterministic sig-

nal is the estimation of a linear swept-frequency chirp

signal, x(t) = [c(t); c(t + 1); : : : ; c(t + m � 1)]T , where
c(t) = A cos(Bt2+Ct+D) and � = [B;C]T are the pa-

rameters of interest (A and D can be found using linear

least squares methods).

Common to these examples is that the number of sig-

ni�cantly large eigenvalues changes with the parameters

(�� and A, respectively).

Since Rx(�) is full rank, it is impossible to de�ne

a true signal subspace. However, it is still possible to

perform an eigenvalue decomposition of Ry = E�E�,

select the d principal eigenvectors of Ry as a pseudo-

signal subspace and write the covariance matrix as

Ry = Es�sE
�

s +En�nE
�

n

where

�s = diag[�s;1; : : : ; �s;d]

�n = diag[�n;1; : : : ; �n;m�d]
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Figure 1: Cost function of the DSPE algorithm, 1=f1(�)
given in equation (5). d = 2, � = 0�, �� = 2�, 8 sensors,
no noise, true covariance matrix.

and �s;1 � � � � � �s;d > �n;1 � � � � � �n;m�d. Here, d,

the dimension of the pseudo-signal subspace is a param-

eter to be chosen by the user.

We assume that the following identi�ability condition

is ful�lled.

span[Es(�)] = span[Es(�)] () � = � (4)

Form the sample covariance matrix R̂y =
1
N

PN
t=1 y(t)y

�(t) and denote the corresponding

estimated pseudo-signal and pseudo-noise eigenvectors

with Ês and Ên, respectively.

2 ALGORITHMS

2.1 Previous Results

Recently, a number of di�erent algorithms have been

suggested to estimate � and �� in the model for local

scattering.

The maximum likelihood estimator is formulated in

[9] together with a weighted covariance matching algo-

rithm,

�̂ = arg min
�;�2

s
;�2
n

Tr

��
(Ry(�; �

2
s ; �

2
n)� R̂y)W

�2�

where the optimal weightingW = R̂�1y gives asymptot-

ically e�cient estimates.

To generalize the idea of MUSIC, note that E�sRx � 0
as long as the angular spread is small. This observation

has led to two closely related algorithms,

�̂ = argmin
�

fk(�) = argmin
�

Tr[Ê�nR
k
x(�)Ên] (5)

where k = 1 gives the DSPE algorithm [10] and k = 2
gives the DISPARE algorithm [6]. However both meth-

ods in general fail to give consistent estimates. To see

this, insert the trueRx decomposed into a pseudo-signal

and a pseudo-noise part

fk(�) =Tr[E�nR
k
x(�)En]

=Tr
h
E�nEs(�)�

k
s (�)E

�

s(�)En

+E�nEn(�)�
k
n(�)E

�

n(�)En

i

At the true parameter, the �rst term is zero and

fk(�0) = Tr[�k
n(�0)]

but since both terms depend on the parameters, it will

typically be possible to �nd some other parameter value

that decreases the second term so much that the cost

function is less than fk(�0) even though the �rst term

is non-zero. This is illustrated in �gure 1, where the

global peaks are found at [�; ��] = [�2:7�; 0�], whereas
the true source is located at [�0; ��0 ] = [0�; 2�].
If the ordinary root-MUSIC algorithm is applied to

Ry searching for two point source directions, it can be

shown that within good approximation, the directions

found are given by �̂1;2 = �0 � �(��0 ) for some increas-

ing function �(x). This observation can be exploited

to obtain estimates of � and �� at a low computational

cost, see [2, 3].

2.2 Subspace Fitting

Following the ideas of traditional subspace �tting meth-

ods, we would like to �nd an estimate �̂ that makes

Es(�̂) as orthogonal as possible to Ên.

Two possible cost functions that solve the consistency

problems of DSPE and DISPARE (5) are

�̂ = argmin
�

fNSF(�) = argmin
�

kE�s(�)Ênk (6)

�̂ = argmin
�

fSSF(�) = argmin
�

kE�n(�)Êsk (7)

representing pseudo-noise and pseudo-signal subspace

�tting approaches, respectively. Since these cost func-

tions can be computationally expensive (d or m � d

eigenvectors of Ry(�) must be calculated at each pa-

rameter value), an attractive alternative is

�̂ = argmin
�

f 0NSF(�) = argmin
�

kS�(�)Ênk (8)

�̂ = argmin
�

f 0SSF(�) = argmin
�

kN�(�)Êsk (9)

where S(�) and N(�) are matrix functions such

that spanfS(�)g = spanfEs(�)g, spanfN(�)g =
spanfEn(�)g and where S(�), N(�) or good approxi-

mations thereof can be computed quickly. Any norm

can be used in (6)�(9), for example a weighted Frobe-

nius norm.

Note that the algorithms give consistent estimates

when N !1 as long as the identi�ability condition (4)

holds.
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Figure 2: Cost function of the optimally weighted signal

subspace �tting criterion, 1=fWSF(�). d = 2, � = 0�,
�� = 2�, 8 sensors, no noise, true covariance matrix.

2.3 Optimal Weighting

The most general weighted squared norm that can be

applied to the SSF cost function in equation (7) is

fSSF(�) = (vec[E�n(�)Ês])
�W vec[E�n(�)Ês]

Using the theory of Asymptotically Best Consistent

(ABC) estimation [7] and a Taylor expansion of the

eigendecomposition [2, 4] it can be shown that the opti-

mal weightingWopt is

W�1
opt = diag[vecMns](�s 
�n) diag[vecMns]

where

[Mns]kl =
1

�n;k � �s;l

After some simpli�cations, the resulting optimally

weighted subspace �tting criterion is given by

fWSF(�) = k��1=2n (�nE
�

nÊs �E�nÊs�s)�
�1=2
s k2F

(note that all the entities except for Ês depend on � and

that in addition both �s and �n depend on the noise

power �2n.)

The optimal weighting matrix can be replaced by

a consistent estimate without a�ecting the large sam-

ple performance which gives the following practical cost

function

fWSF(�) =k�̂
�1=2

n (�̂nE
�

n(�)Ês �E�n(�)Ês�̂s)�̂
�1=2

s k2F
=Tr[Ês�̂

�1

s Ê�sEn�̂nE
�

n + Ês�̂sÊ
�

sEn�̂
�1

n E�n

� 2ÊsÊ
�

sEnE
�

n]

(kMk2F = Tr[M�M], the Frobenius norm) Note that

for the special case of direction estimation of point

sources, �n = �2nI and fWSF(�) reduces to the familiar

WSF/MODE criterion [8, 11]. One example of the WSF

cost function is shown in Figure 2.

Assuming that x(t) is Gaussian and temporally white,

it can be shown that the asymptotic large sample dis-

tribution of the parameter estimates is given by
p
N(�̂ � �0) 2 AsN(0;C) , where

C =
1

2
Re

h� @

@�
vec[Ry(�)]

�
�
�
[R�1y ]cs 
 [R�1y ]n

�

� @

@�
vec[Ry(�)]

i
�1

and

[R�1y ]s =Es�
�1
s E�s

[R�1y ]n =En�
�1
n E�n

Again, for the traditional point source model, it is easy

to show that this expression reduces to the WSF results

given in [8, 11].

Note however that in general the performance does

not reach the Cramér-Rao lower bound, in contrast to

the point source model where WSF indeed is asymp-

totically e�cient. Still, for many problems, the perfor-

mance is near optimal and the method could have com-

putational advantages compared to ML or covariance

matching techniques [9].

3 NUMERICAL EXAMPLE

Simulations have been performed on a scenario with an

eight element uniform linear antenna array with half

wavelength element separation, a single source located

at broadside subject to uniformly distributed local scat-

tering and SNR 10 dB. Each estimate was calculated

from a data burst of N = 100 data samples. Figure 3

shows the theoretical and estimated RMS values of �̂

and �̂� for di�erent values of ��, calculated from 500

trials for each test case. For comparison, the Cramér-

Rao lower bound is included. A few (less than 1% in

each experiment) outliers were removed in the simula-

tion results.

Three di�erent values of d, 1,2 and 3, were tested. As

expected, the algorithm gives best performance when d

is chosen as the number of eigenvalues of Rx that are

signi�cantly larger than the background noise, which

can also be deduced from the theoretical performance

expressions. In this application, d = 2 gives the best

overall performance for the parameter range of interest.

In general, d could be selected based on some a priori

information on the parameter range or set adaptively

using a numerically estimated rank of R̂y.

4 CONCLUSIONS

The idea of weighted subspace �tting has been extended

to full rank models. The resulting algorithm gives con-
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Figure 3: Theoretical and empirical performance of the

weighted pseudo-signal subspace �tting algorithm for

di�erent values of d.

sistent estimates and asymptotic expressions for the es-

timation error have been derived.

Similar ideas have been presented previously [6, 10]

but it was shown that those algorithms fail to give con-

sistent estimates.

In general, the weighted pseudo-subspace �tting es-

timator is not asymptotically e�cient and since both

ML and weighted covariance matching [9] do provide

asymptotically e�cient estimates at a comparable or

even lower computational cost, the WSF algorithm may

seem to be of minor interest. However, the algorithm

may retain the implicit noise �ltering and computation-

ally well-behaved cost function that is o�ered by tra-

ditional subspace methods. Furthermore, the results

can give ideas for and provide a better understanding of

other algorithms, such as the low complexity algorithm

presented in [3], which can be seen as an approximation

of (8) where S(�) is approximated by the array response

of two closely separated point sources.

REFERENCES

[1] F. Adachi, M.T. Feeney, A.G. Williamson, and J.D.

Parsons. Cross correlation between the envelopes

of 900 MHz signals received at a mobile radio base

station site. IEE Proceedings, Pt. F, 133(6):506�

512, October 1986.

[2] Mats Bengtsson. Sensor array processing for scat-

tered sources. Licentiate Thesis TRITA-S3-SB-

9729, Signal Processing, Royal Institute of Tech-

nology, Stockholm, Sweden, December 1997.

[3] Mats Bengtsson and Björn Ottersten. Rooting

techniques for estimation of angular spread with

an antenna array. In Proceedings of VTC'97, pages

1158�1162, May 1997.

[4] R.P. Gupta. Asymptotic theory for principal com-

ponent analysis in the complex case. J. Indian

Statist. Assoc., 3:97�106, 1965.

[5] Lennart Ljung. System Identi�cation: Theory for

the User. Prentice-Hall, Inc., Englewood Cli�s,

N.J, 1987.

[6] Y. Meng, P. Stoica, and K.M. Wong. Estimation of

the directions of arrival of spatially dispersed sig-

nals in array processing. IEE Proceedings - Radar,

Sonar and Navigation, 143(1):1�9, February 1996.

[7] Torsten Söderström and Petre Stoica. System Iden-

ti�cation. Prentice-Hall, Int., 1989.

[8] Petre Stoica and Kenneth C. Sharman. Maximum

likelihood methods for direction-of-arrival estima-

tion. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 38:1132�1142, July 1990.

[9] Tõnu Trump and Björn Ottersten. Estimation of

nominal direction of arrival and angular spread us-

ing an array of sensors. Signal Processing, 50(1-

2):57�69, April 1996.

[10] Shahrokh Valaee, Benoit Champagne, and Pe-

ter Kabal. Parametric localization of distributed

sources. IEEE Transactions on Signal Processing,

43:2144�2153, September 1995.

[11] Mats Viberg and Björn Ottersten. Sensor array

processing based on subspace �tting. IEEE Trans-

actions on Signal Processing, 39(5):1110�1121,May

1991.


