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ABSTRACT

In this paper, we investigate the performance of classifier-
based non-negative matrix factorization (NMF) methods for
detecting overlapping acoustic events. We provide evidence
that the performance of classifier-based NMF systems dete-
riorates significantly in overlapped scenarios in case mixed
observations are unavailable during training. To this end, we
propose a K-means based method for artificial generation of
mixed data. The method of Mixture of Local Dictionaries
(MLD) is employed for the building of the NMF dictionary
using both the isolated and artificially mixed data. Finally an
SVM classifier is trained for each of the isolated and mixed
event classes, using the corresponding MLD-NMF activations
from the training set. The proposed system, tested on two ex-
periments with a) synthetic and b) real events, outperforms
the state-of-the-art classifier-based NMF system in the over-
lapped scenarios.

Index Terms— NMF, MLD, Mixed Data, Overlapping
Acoustic Event Detection

1. INTRODUCTION
Acoustic event detection (AED) is a major part of the com-
putational auditory analysis field, aiming to detect the time
boundaries of meaningful sound events. With audio being a
crucial modality in multimodal content, most common appli-
cations of AED include smart home environments, surveil-
lance and security [1, 2], as well as multimedia database re-
trieval.

Several methods have been developed the last years for
AED. In the case of isolated AED, traditional methods
based on hidden Markov models (HMMs) in conjunction
with conventional features (e.g., MFCCs) show satisfactory
performance [3, 4]. Regarding the more challenging over-
lapped scenario, different approaches include temporally-
constrained probabilistic analysis models [5], generalized
Hough-transform based systems [6], HMM-based systems
with multiple-path Viterbi decoding [7], non-negative ma-
trix factorization [8], and multi-label deep neural networks.
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In particular, the latter have shown good performance by
modeling overlapping events in a natural way [9, 10].

NMF-based approaches constitute a popular choice for
AED, and especially when it comes to overlapping scenarios,
due to their natural relation with the source separation task
and their ability to detect multiple events occurring simulta-
neously. NMF-related methods can be separated in those that
exploit the NMF activations directly to perform event detec-
tion [8, 11], and in those that employ a classifier trained on
these activations [12, 13]. Based on the fact that NMF-based
approaches can benefit from the creation of a Mixture of Lo-
cal Dictionaries (MLD) [14], in [15] the authors propose a
classifier-based NMF system using MLDs for improved de-
tection performance.

In our paper we investigate the performance of state-of-
the-art NMF approaches under overlapped conditions. We
provide evidence that the performance of the, so far, classi-
fier based NMF methods degrades significantly in overlapped
scenarios, mainly because the training phase considers acti-
vations only from isolated data. To alleviate this problem, we
propose the generation of mixed observations using the iso-
lated ones available, and subsequently their incorporation in
the training data. For the artificial mixing procedure, we use
a K-means based method for each pair of events. The MLD
dictionary is built using the new training set, and SVM clas-
sifiers are trained for each of the isolated and mixed events
using the corresponding activations. Our method is tested in
two experiments using a) synthetic and b) real event instances
and shows significant improvement over the state-of-the-art
classifier based method in the overlapping scenarios.

The remainder of the paper is organized as follows: Sec-
tion 2 presents and discusses the drawbacks of the two NMF-
based alternatives that are compared with our system; Sec-
tion 3 describes the artificial generation of mixed data and the
outline of the proposed method; Section 4 reviews the exper-
imental framework and reports our results; and, finally, Sec-
tion 5 concludes the paper.

2. EXISTING NMF-BASED METHODS FOR AED
We will present briefly two popular methods for NMF-based
AED. The first can be considered as the baseline, as it is the



simplest one: Sparse-NMF with thresholding. The second is
a classifier-based MLD-NMF method presented in [13, 15].
We will discuss the drawbacks of these two methods for iso-
lated/overlapped acoustic event detection.

2.1. Sparse-NMF approach
The application of sparse-NMF for isolated and overlapping
AED is based on the idea of linear decomposition of events
into spectral atoms. Given non-negative features with approx-
imate linearity (e.g. filterbank energies), a test event will be
decomposed into atoms of observed event(s).

NMF is a linear non-negative approximate factorization of
the observed feature matrix, and it is formulated as follows:
Given a non-negative matrix V ∈ <≥0,M×N , the goal is to
approximate V with the product: V ≈ W · H, where W ∈
<≥0,M×R denotes the non-negative dictionary matrix, and
H ∈ <≥0,R×N represents the non-negative activation matrix.
Minimization of a suitable error cost function D(V||WH) re-
sults in iterative estimation of W and H [16].

For detection, assuming a given dictionary W that con-
tains atoms of the various classes of interest, the estimated H
provides activations of each class through time. It is shown
that the sparse-NMF which imposes sparsity on the matrix
H, performs better for the detection task. Sparse-NMF mini-
mizes the following objective: D(V||WH) + λ‖H‖1, with D
denoting the generalized KL-divergence between V and WH,
and parameter λ controlling the trade-off between sparseness
on H and accurate reconstruction of V.

The method is used in this paper as a baseline. Regarding
the building of the dictionary, using training data consisting
of isolated event instances, a sufficient number of atoms is ex-
tracted and stored in the dictionary for each class of interest,
resulting in the total dictionary matrix W. Then in the detec-
tion step, a simple thresholding on the activations of matrix H
decides for the existence of each event in each frame.

We can note two main disadvantages in this traditional
method. The first is that the threshold-based decision in the
detection step cannot be considered as the best choice in terms
of robustness. The second and more important, is that, as
pointed out in [14], the convex cones created by the bases of
the sub-dictionaries of the different classes may often overlap
between each other. This means that new observations that
fall in the overlapped regions can be reconstructed with many
different ways (unstable activations) which can result in fail-
ure of classification (e.g. false alarms).

2.2. SVM-based NMF approach with MLD dictionary
This method essentially refers to the core system of the works
in [13, 15]. This system attempts to overcome the drawbacks
of the aforementioned traditional sparse-NMF method by em-
ploying an MLD dictionary framework and an SVM classifier
for the final detection step. The MLD-based dictionary gen-
eration eliminates overlaps between convex cones, and pro-
duces more stable activations which are used for the train-
ing of robust SVM classifiers. As shown in the flow diagram

Fig. 1: Block-diagram of the proposed AED method.

in Fig. 1 (black schemes), the method consists of two main
parts; dictionary learning and classifier training.

Dictionary learning
In dictionary learning, the feature matrix V containing all
training data is decomposed into an initial basis matrix W0 by
basic unsupervised NMF. Next, by applying K-means to W0,
G centroids µ(g) are obtained, with g ∈ {1, ..., G} denoting
the centroid’s index. The final MLD dictionary W consists
of G sub-groups (of Kg bases each) which model acoustic
atoms W = [W(1)...W(G)]. The MLD dictionary is learned
by minimizing the following objective:

D(V||WH) + η
∑
g

D(µ(g)‖W(G)) + λ
∑
t

Ω(ht)

where ht denotes the column vector of H at time frame t.
The second term is a constraint which makes bases of sub-
groups to be similar with µ(g), so that the resulting convex
cones are compact. The third term preserves group-sparsity
in the solution.

Classifier training
For each class considered, an activation matrix Hi is ex-
tracted from its corresponding training spectrogram Vi by
MLD based NMF with the global dictionary W. Then the
column vectors ht(i) of Hi at each time frame t are used as
feature vectors to train a linear SVM classifier. A multi-class
SVM is trained using the one-against-all approach.

This method seems to solve the problems of the traditional
sparse-NMF approach in the isolated AED case. Although,
we must remark one possible drawback in the case of over-
lapping scenarios: The classifiers are trained for each class of



Fig. 2: Generation of mixed data (green) from a pair of isolated
events (blue and red). Toy example, with two features “x1” and “x2”.

interest using its corresponding isolated data. This makes the
classifier vulnerable in the presence of unseen mixed data. An
observation of a mixed event containing classes i and j will
not necessarily be classified correctly by both the classifiers
of i-th and j-th event.

3. PROPOSED METHOD
Our method attempts to solve the deficiency of the previous
method in overlapped scenarios, by considering mixed data in
the training and testing stages. The block-diagram of the pro-
posed method is depicted in Fig. 1 (black and blue schemes).

3.1. Dictionary learning
Our scope is to include mixed data in the dictionary learn-
ing procedure. Considering the difficulty of having enough
amount of mixed data available, we propose a method for ar-
tificial generation of mixed data. Assuming linearity of fea-
tures, the method acts in the feature and not in the signal do-
main. The basic idea is shown in Fig. 2. In order to create
representative observations of the mixed data, we try to com-
bine (sum) representative observations from each of the two
events considered.

Given a number of centroids C and a percentage α, we
first perform K-means clustering with C clusters in the fea-
ture space of each event. Then α% from the samples of each
cluster are selected. Finally we consider all the combinations
(addition) between the selected samples of the two classes.

After mixed data generation, both isolated and mixed data
are used as input for the MLD dictionary learning procedure.
In this way, bases created in the final dictionary may corre-
spond to overlapped events too.

3.2. Classifier training
In the classifier training stage, instead of trainingN classifiers
(N is the number of events), we train N +

(
N
2

)
. Also as we

are modeling all the possible events (isolated and mixed), we
train linear probabilistic SVMs and in the testing stage we
choose the event with the highest score for each frame.

4. EXPERIMENTS
4.1. Datasets and Experimental Framework
We perform our experiments on two datasets, with the one
containing synthetic events and the other real events. In

Fig. 3: Different instances for each of the 5 synthetic events. Hori-
zontal axis corresponds to time and vertical to frequency.

the case of the synthetic event dataset, we generated artifi-
cial spectral patches for 5 synthetic events, while in the real
event case, we extracted spectral patches from 5 real events
contained in the database designed for the Task 2 of the
DCASE’16 challenge (office-related events; drawer, phone,
keys, speech, doorslam).

In both datasets, the performance of different methods is
evaluated in both isolated and overlapped scenarios. In the
isolated case, testing sequences of isolated spectral patches
are created, whereas in the overlapped case, sequences of
mixed spectral patches are generated. A mixed spectral patch
results from the superposition of two isolated spectral patches
from the corresponding testing dataset. Regarding the spec-
tral patch extraction, in the case of synthetic events, we gen-
erate 5x5 spectral patches with the following procedure: The
spectral patches of each event are characterized by a particu-
lar pattern which is slightly varying its structure in the differ-
ent instances (see Fig. 3). To introduce variability, each time
some of the active “tiles” of the the pattern can be missing
(up to 5), while the active “tiles” take random positive values
in the [0.5, 1] interval. Random noise is also added after the
generation of each spectral patch. In the case of real events,
spectral patches have dimension 100x10 and are composed of
100 Mel-filterbank energies in 100msec intervals (10 frames).

Finally, regarding the partition into training and testing
sets, in the real event case, we partitioned the training data
of DCASE’16 challenge, so that 80% of event recordings is
used for training and the rest 20% for testing purposes. In
the synthetic event case, we generated a small number of in-
stances per event (30) for building the training set. For both
databases, the testing sequences contain 1000 spectral patches
for both isolated and overlapped scenarios. We should note,
that in the way that we build our synthetic testing sequences,
when overlap occurs, it occurs in the whole duration of spec-
tral patches involved. In this way, our problem can be also
considered as classification of spectral patches of acoustic
events with temporal information.

4.2. Results
In Tables 1 and 2, the comparative results for the three dif-
ferent methods are presented in terms of Fscore, for both
isolated and overlapped scenarios and under two different
experimental setups, for the two event datasets. In the first



Table 1: Performance of the different systems for the synthetic data
scenario in terms of Fscore (%).

Method Local opt. Global opt.
Isol Overl Avg Isol Overl Avg

sparse-NMF 95.10 95.82 95.46 95.21 93.53 94.37
SVM&MLD-NMF 96.78 77.23 87.00 94.39 77.23 85.81

Proposed 96.42 94.80 95.61 92.30 91.16 91.73

Table 2: Performance of the different systems for the real data sce-
nario in terms of Fscore (%).

Method Local opt. Global opt.
Isol Overl Avg Isol Overl Avg

sparse-NMF 78.36 78.54 78.45 75.49 77.52 76.51
SVM&MLD-NMF 85.83 61.76 73.79 83.96 61.76 72.86

Proposed 85.79 74.49 80.14 82.00 68.86 75.43

setup (Local opt.), optimization of the various parameters of
the methods is performed in each scenario separately, while
in the second (Global opt.) optimization is performed only
one time for the whole testing procedure. In fact, “Local opt.”
assumes prior knowledge of overlap existence.

In Table 1 we can draw three major conclusions: First of
all, our proposed method clearly outperforms the state-of-the-
art SVM&MLD-NMF based method in the overlapping sce-
narios, both in “local” and “global” setups achieving 77.16%
and 61.18% relative error reductions correspondingly. In fact,
SVM&MLD-NMF method’s performance degrades signifi-
cantly in the presence of mixed events. Next, we can observe
that the performance of baseline sparse-NMF approach is sta-
ble across the different scenarios and setups, achieving also
the best Fscore in the “global” optimization setup. We can
say that in the case of quite simple and discriminable events
this baseline is a good option for both isolated and overlapped
scenarios. Finally, only our proposed method seems to be af-
fected significantly by using global optimization instead of
the local one. It seems that the parameter α that controls the
amount of mixing data included in the training phase, has
strong influence on the behavior of our method.

In Table 2, corresponding results for the real-event sce-
nario are presented. Similarly to the synthetic case, we can
again notice the big drop in the performance of SVM&MLD-
NMF method when we move from the isolated to the over-
lapped scenario, as well as the superiority of the proposed
method in the overlap case (33.29% and 18.57% relative
error reduction in “local” and “global” setups respectively).
Also, the baseline sparse-NMF method shows again stable
performance across different scenarios. However, as ex-
pected, in this more challenging case of real events, both
the SVM&MLD-NMF and proposed methods perform sig-
nificantly better than the baseline in the isolated scenario.
Finally, like before, among the three methods, our approach
is affected the most by the switch from the “local” to the
“global” optimization setup.
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Fig. 4: Performance of the proposed method in both Isolated and
Overlapped scenarios as the percentage α of mixing increases.

By summarizing the results, we can claim that the clas-
sifier based SVM&MLD-NMF approach outperforms the
baseline sparse-NMF based one in the isolated event scenario.
This is important, as the fact is that the isolated scenario is
by far the most frequent under realistic conditions. However,
if we want to test the system under more challenging over-
lapping conditions, the performance of the existing method
deteriorates. Our proposed method, by incorporating mixed
data in the training phase, succeeds to increase the perfor-
mance significantly under overlapped conditions, and also
provide better results in total. However there is one draw-
back: our method is strongly affected by the amount of mixed
data employed for training. This is depicted also in Fig. 4,
where the performance of the proposed method is shown for
the real events dataset, for both the isolated and overlapped
cases, as the mixing parameter α increases. As α increases,
performance increases also in the overlapping case, but at
the same time, decreases (with a higher rate) in the isolated
case. With knowledge of the expected degree of overlap in
our dataset, an optimal value of α could be chosen.

5. CONCLUSION
In this paper we investigated the performance of state-of-the-
art NMF approaches for overlapping acoustic event detec-
tion. We provided evidence of degradation of the existing
method’s performance under highly overlapped conditions,
and we proposed a new method which tries to alleviate this
problem by employing a module for artificial generation of
mixed data which are considered in the training phase. Prob-
abilistic SVMs are also employed in the final classification
step using all available classes (isolated and mixed).

Results obtained on experiments with synthetic and real
events were promising, outperforming the existing method
in overlapping scenarios while also preserving good perfor-
mance in the isolated ones.

In future work, the design of a module able to identify the
existence (or not) of overlap will be investigated, in order to
increase the robustness of our system. Also alternative meth-
ods for artificial generation of mixed data will be considered.
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