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Abstract—The recent development of Audio-based Distribu-
tional Semantic Models (ADSMs) enables the computation of au-
dio and lexical vector representations in a joint acoustic-semantic
space. In this work, these joint representations are applied to the
problem of automatic tag generation. The predicted tags together
with their corresponding acoustic representation are exploited
for the construction of acoustic-semantic clip embeddings. The
proposed algorithms are evaluated on the task of similarity
measurement between music clips. Acoustic-semantic models are
shown to outperform the state-of-the-art for this task and produce
high quality tags for audio/music clips.

I. INTRODUCTION

Semantic information in the form of metadata, e.g., tags,
has been valuable in enhancing the performance for many
music processing tasks [1], [2], [3]. Metadata typically comes
in two forms: free text associated with a music or audio clip
or tags (list of words or phrases) that describe the clip. Tags
are often preferred over (web-mined) text, because they give
a direct description of the song, e.g., genre or instruments,
while the latter is inherently noisy; only a part of the text is
musically relevant. The automatic annotation of clips (auto-
tagging) is becoming vital and finds numerous applications
including efficient music indexing and retrieval.

A variety of auto-tagging methods have been proposed in
the literature. In [4], the similarity between artists is exploited
for the prediction of the most descriptive tags for clips. In [5],
language models were computed using Restricted Boltzmann
Machines, while in [6], the combination of audio features is
proposed within a block-level framework. The use of semantic
tags for music similarity measurement is proposed in [7],
where each song is represented by a Semantic Multinomial
Distribution over a vocabulary of tags.

Music similarity is at the core of query-by-example, where
the user gives a musical piece as a query and the system returns
a ranked list of recommendations. Content-based similarity
can be exploited by collaborative filtering algorithms [8], [9]
especially where there is lack of collaborative filtering data,
a.k.a. “cold start” problem. This improves the efficiency of
music recommendation and playlist generation, two important
tasks in Music Information Retrieval (MIR). Music similarity
estimation can be formulated as the problem of finding an ap-
propriate embedding of a music clip with respect to a distance
metric. Many approaches use machine learning techniques
in order to learn the distance metric that best approximates
absolute user ratings [10], [11], [12] or relative user ratings

from different datasets [13]. Furthermore, research efforts
include the collection of similarity scores that can be used
as groundtruth information [14], [15] and the investigation of
different evaluation techniques [16] for music similarity.

Distributional Semantic Models (DSMs) [17] is a popular
method for automatically constructing semantic representa-
tions from text. Despite their success in various semantic tasks
(e.g., semantic classification and computation of semantic
similarity), the DSMs have been criticized as “disembodied”,
since they rely solely on linguistic information without being
grounded in perception and action. The disconnection of
natural language from the physical world, also referred as
the symbol grounding problem [18], is alleviated via the
integration of multiple modalities [19], [20]. The development
of audio-based DSMs (ADSMs) was proposed in [21] for the
representation of words based on their acoustic properties,
while in [22] an extension was presented using combinations
of auditory and linguistic features. A recently proposed ap-
proach dealt with the fusion of (different) acoustic features
according to the nature of sounds (music, speech, other) [23].

In this work, the ADSM described in [23] is adopted for
the computation of audio and lexical vector representations in
a joint acoustic-semantic space. These ‘bag-of-audio-words’
representations are used for the automatic annotation of music
clips. Then, the predicted tags and the acoustic features
are exploited for the construction of acoustic-semantic clip
embeddings. The proposed algorithms are evaluated on the
task of music similarity measurement between clips taken from
the MagnaTagATune dataset [14].

This paper is organized as follows. In Section II, various
methods are described for the construction of clip representa-
tions. In Section III, the experimental dataset and procedure
are described in detail, while in Section IV, the evaluation
results of the proposed methods are reported and compared
with the literature.

II. SYSTEM DESCRIPTION

For a dataset consisting of audio clips and the correspond-
ing annotation (tags), the procedure for the creation of clip
representations consists of a series of steps described below.

A. Creation of audio-word vocabulary

In order to train an audio-word vocabulary, the clips are
partitioned into partially overlapping windows and a feature



Fig. 1: Auto-tagging system overview.

Clip id Groundtruth Tags Predicted Tags (N=5)
3843 indian, sitar sitar, indian, eastern, india, oriental
9531 rock, heavy, heavy metal, loud, fast, hard rock, metal hard, loud, heavy, heavy metal, metal
13526 bass, drums, drum, funky, reggae funky, beat, drums, reggae, funk
15380 classical, solo, cello, violin, strings cello, viola, violin, solo, classical
19920 - orchestra, violins, flutes, fiddle, violin
21725 choir, choral, men, man monks, chant, chanting, men, choral
29231 acoustic, guitar classical guitar, guitar, acoustic, lute, spanish
43390 rock, loud, pop, vocals, male vocals male vocals, pop, male vocal, male singer, rock
48010 silence low, soft, no singing, quiet, wind
57081 piano piano solo, piano, classic, solo, classical

TABLE I: Examples of auto-tagging outputs for the MagnaTagATune dataset. The predicted tags are ordered according to their similarity
with the respective audio clip (in descending order).

vector is extracted from every window. Therefore, every clip is
represented by a set of vectors depending on its length. Next,
all vectors are clustered by applying the k-means algorithm
and the k centroids of the returned clusters are considered as
the audio-words of the vocabulary.

B. Audio clip representations

As presented in [23], audio clips are represented as a
mixture of audio-words (bag-of-audio-words approach). For
each window ~ot of a clip, a feature vector ~xt ∈ Rd is computed
(where d is the dimensionality of the feature space) and
associated with the audio-word vocabulary. The association
is performed by encoding the ~xt vector as a k-dimensional
vector ~et:

~et = (w1, w2, ..., wk), (1)

where wi ∈ [0, 1] and
∑k

i=1 wi = 1. The weight wi denotes
the contribution of the i-th audio-word to the window repre-
sentation and is computed according to the similarity score
between the audio-word and the feature vector ~xt (see [23]
for details). Finally, the clip representation, ~rc, is obtained by
averaging the vectors computed for the respective windows.
Given a collection consisting of M clips, this process results
in a M×k matrix. The space consisting of bag-of-audio-words
clip representations, will be referred as AUDIO space.

C. Tag representations via the ADSM

As described in [23], an ADSM is constructed that provides
bag-of-audio-words embeddings for tags, based on their asso-

ciation with the clips. In particular, the representation ~rj of a
tag j is computed by averaging the representations of clips that
have this tag in their descriptions. For a collection of audio
clips with T (unique) tags this results in a T ×k matrix. Then,
the Positive Pointwise Mutual Information (PPMI) weighting
is applied to the matrix [24], [25], [26].

D. Clip annotation (auto-tagging)

The bag-of-audio-words representations of tags provide
a straightforward way for the automatic annotation (auto-
tagging) of an audio clip c. First, the clip gets a represen-
tation, ~rc in the AUDIO Space. Then, the cosine similarity is
computed between ~rc and the representation ~rj of each tag j:

scj =
~rc · ~rj
|~rc| · |~rj |

. (2)

The N tags that best describe the clip c are those correspond-
ing to the N highest similarity scores scj (k-NN classification).
An example of the proposed auto-tagging algorithm is shown
in Figure 1.

Table I includes some examples selected from the MagnaTa-
gATune dataset (see Section III-A) for which the groundtruth
labels are compared with the N = 5 automatically predicted
tags. It is observed that many tags appear both in the predicted
and the groundtruth labels, while other tags have very similar
meaning (e.g., ‘silence’ and ‘quiet’). Moreover, quite descrip-
tive tags are returned for clips that have no annotations (e.g.,
clip 19920).



(a)

Fig. 2: Overview of music similarity estimation using AUDIO, ADSM-AUTOTAG, FUSION-AUTOTAG.

E. Semantic representations of clips
The ADSM described in Section II-C is exploited for the

representation of audio clips via their association with tags.
Specifically, the embedding of a clip is obtained by averaging
the representations of tags that are semantically related with
the clip. The determination of clip-tag associations can be
performed either using already provided metadata, or via the
proposed auto-tagging scheme. In the latter case, the clip gets
a representation (in the ADSM-AUTOTAG space), as follows:

~r′c =
1

N

N∑
i=1

~ri, (3)

where ~ri is the representation of the i-th tag, while N denotes
the number of tags returned by the auto-tagger.

F. Fusion of audio and semantic representations
The similarity score between two clips in the AUDIO

space is computed as the cosine similarity of their acoustic
representations. Similarly, the similarity between clips in the
ADSM space is computed as the cosine similarity of their
respective semantic representations. However, the character-
ization of clips only via their semantic representations in
some cases may lead to inaccurate estimates. For example,
if two clips are annotated with the same labels, they will have
exactly the same ADSM representations although they sound
different. This problem can be alleviated with the fusion of
acoustic and semantic information. The clip embedding ~rc in
the AUDIO space can be combined with the embedding from
the ADSM (or ADSM-AUTOTAG) space, ~r′c, via a weighted
average scheme:

~r′′c = w~r′c + (1− w)~rc, (4)

or via a weighted concatenation:
~r′′c = w~r′c ⊕ (1− w)~rc, (5)

where ⊕ stands for the vector-concatenate operator and w is
a real-valued number indicating the relative importance of the
fused representations. This method results in clip embeddings
in the FUSION (or FUSION-AUTOTAG) space. The various
methods for the representation of clips are graphically repre-
sented along with an auto-tagging example in Fig 2(a).

III. EXPERIMENTAL DATASET AND PROCEDURE

The proposed algorithms are evaluated for the similarity
computation between songs. For this purpose, the MagnaTa-
gATune dataset is used.

A. The MagnaTagATune dataset

The MagnaTagATune dataset contains 25,863 30-second
audio clips (provided by the Magnatune1 label) and 188
tags. In addition, similarity data have been collected from
the TagATune game [27]. In a bonus part of the game, the
user listens to three songs and gives a vote to the song that
sounds as the most dissimilar when compared with the other
two songs (often called as odd one out game). The similarity
data for every triplet of clips is stored in form of a triplet
representing the histogram of votes i.e., the clip associated
with the maximum value is the most irrelevant clip. In total,
533 triplets are derived and every triplet of song ids is saved in
the form (a, b, c) where c is the outlier. This explicitly means
that d(a, b) < d(a, c) (constraint (a, b, c)) and d(b, a) < d(b, c)
(constraint (b, a, c)), where d() is the perceptual distance
between two clips.

Due to the objective opinion of each user, there are con-
straints that contradict each other. Hence, a method was pro-
posed in [11] in order to deal with the inconsistent constraints.
In [10], the 860 remaining constraints derived from [11] were
split into non-overlapping training and test sets of 774 and
86 constraints, respectively enabling 10-fold cross-validation.
These constraints are published serving as a common eval-
uation benchmark. The described benchmark is used in this
work.

B. Data preprocessing and feature extraction

All audio clips are converted to WAV format and resampled
at 22.05 kHz. For each clip, a feature vector is extracted from
windows of 250 ms with a step of 100 ms. Here, two different
feature vectors are extracted: the first (EchoNest) is obtained
by the EchoNest API 1.02. Specifically, 24 features per audio
frame have been kept, consisting of 12 chroma features and

1http://magnatune.com/
2http://developer.echonest.com/



Literature Method EchoNest Features
Euclidean [13] 0.598
RITML [13] 0.711
SVM [10] 0.712
MLR [10] 0.689

TABLE II: Accuracy of methods reported in the literature [10], [13].

12 timbre features. The chroma features describe the relative
dominance of every pitch in the chromatic scale and are
normalized to [0, 1]. The timbre features correspond to the
coefficients of 12 basis functions which represent the texture
of sound. The second type of feature vectors (MFCCdd)
consists of the Mel Frequency Cepstral Coefficients (MFCCs)
(concatenated with spectral energy), their 1st and 2nd order
derivatives, resulting in a vector of 39 coefficients. In both
cases, the feature vectors are normalized by their mean and
standard deviation values (Z-normalization).

C. Experimental procedure

For each step of the 10-fold cross validation, the audio-word
vocabulary and the ADSM are built using the training clips3.
The representations are then computed for the test clips and
the similarity scores are obtained, as described in Section II-F.
The following methods are evaluated:
• AUDIO: only the acoustic features are used (Sec-

tion II-B).
• ADSM: clip representations are obtained via the provided

tags (Section II-E).
• ADSM-AUTOTAG: same with ADSM method, but all

clip representations (even for clips that have labels) are
derived via auto-tagging (Section II-D). Here, N = 20
tags4 are predicted for every clip.

• FUSION: fusion of AUDIO and ADSM representations
(Section II-F, for w = 0.9).

• FUSION-AUTOTAG: fusion of AUDIO and ADSM-
AUTO-TAG representations, for w=0.9 and N=20.

The number of audio-words (i.e., the number of clusters)
is fixed to k = 300. In addition, dimensionality reduction
via Singular Value Decomposition (l denotes the number of
dimensions) was optionally performed on the matrix where
the rows correspond to different audio clips and the columns
to their representations.

The adopted evaluation metric is the accuracy of each
method, which is defined as the percentage of total test con-
straints (see Section III-A) that are satisfied. The experimental
procedure is followed for each of the 10 folds and the final
score is computed as the average of the accuracy scores. This
procedure is repeated 10 times.

IV. EVALUATION RESULTS

Table II includes the state-of-the-art performance (see [13]
for a brief overview), while the accuracy of the proposed

3For computational efficiency, 1000 clips are randomly selected from the
training set for the audio-word vocabulary.

4N was set to 20 based on experiments conducted using held-out data.

Proposed EchoNest MFCCdd
Method k=300 l=10 k=300 l=10
AUDIO 0.613 0.644 0.636 0.646
ADSM 0.705 0.719 0.717 0.720

FUSION 0.720 0.731 0.681 0.684
ADSM-AUTOTAG 0.705 0.705 0.693 0.696

FUSION-AUTOTAG 0.705 0.709 0.662 0.672

TABLE III: Accuracy of proposed methods for EchoNest and MFC-
Cdd features (for FUSION, w=0.9, while for AUTOTAG, N=20).

Fig. 3: Accuracy w.r.t. different training sizes, i.e., number of
MagnaTagATune clips used to train the audio-word vocabu-
lary. Results are shown for EchoNest features using k = 300.

methods is presented in Table III. In addition to clip represen-
tations, where k=300, the performance is reported with respect
to l=10 dimensions where the best accuracy is achieved for
most methods. The FUSION method5 yields the best accuracy
score: 0.731, which is higher than the best score reported in
the literature (0.712 achieved by SVM [10]). Moreover, the
exploitation of semantic information via the ADSM method
boosts the performance compared with the AUDIO method
(up to 12.7% relative improvement). Regarding the ADSM-
AUTOTAG, the auto-tagging algorithm is applied for all the
test clips, which were not used for the training representations.
However, the ADSM-AUTOTAG method achieves comparable
performance with the ADSM method, where the dataset labels
are used.

The quality of the auto-tagger’s predictions was also con-
firmed after the manual inspection of the predicted tags for
the examples of Table 1. Hence, the auto-tagger’s predictions
can be exploited for the annotation of clips without tags or for
the enrichment of provided annotations. Despite the fact that
the training similarity data (here, in the form of constraints)
are not used, the reported results exceed the state-of-the-art.
As such, the proposed unsupervised algorithm can be applied
in any dataset without the need of manually created similarity
data.

5The performance of the weighted concatenation (see (5)) was found to be
comparable with the performance of the weighted average (see (4)), so the
respective results are not reported here.



In Fig 3, the accuracy of the AUDIO, ADSM and FUSION
methods is shown as a function of the number of clips,
which were used for the construction of the audio-word
vocabulary. Interestingly, even a small number of clips (50-
200) is sufficient for the creation of a vocabulary of audio-
words, achieving 0.717 accuracy (for FUSION method and
200 training clips). In addition, it appears that the ADSM and
FUSION methods are more robust with respect to data sparsity
compared to the AUDIO method.

V. CONCLUSIONS

In this work, an audio-based DSM is exploited for creating
lexical representations and the clip representations are derived
via an auto-tagging scheme. The evaluation is performed on
the task of music similarity measurement using the MagnaTa-
gATune dataset. Although the similarity ratings provided with
the dataset are not considered in the proposed algorithms,
they exceed state-of-the-art methods, that use them in order
to train a similarity metric. Moreover, very few data, e.g., 50
clips, are adequate to train the vocabulary, which is used for
the creation of bag-of-audio-words representations. Therefore,
this unsupervised algorithm can be applied in every dataset
where neither clip annotations or similarity data are necessary.
Regarding future work, we aim to investigate the fusion of
acoustic, semantic and visual modalities and test the proposed
algorithm on multimedia data.
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