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Abstract—Traditional semantic models are disembodied from
the human perception and action. In this work, we attempt
to address this problem by grounding semantic representations
of words to the acoustic and visual modalities. Specifically we
estimate multimodal word representations via the fusion of
auditory and visual modalities with the text modality. We employ
middle and late fusion of representations with modality weights
assigned to each of the unimodal representations. We also propose
a fusion method that assigns different weights to each word, based
on how relevant that word is for the audio and visual modalities.
The proposed methods are evaluated for the task of semantic
similarity computation between words. To our knowledge, this is
the first work that combines text, audio and visual features for
the computation of multimodal semantic word representations.
Multimodal models outperform the unimodal models, indicating
the importance of multimodal fusion and perceptual grounding.

I. INTRODUCTION

Semantic models represent the meaning of various language
entities, such as words, phrases and sentences. For example,
Distributional Semantic Models (DSMs) rely in the distribu-
tional hypothesis of meaning [1], according to which words
that appear in similar contexts tend to have similar meaning.
Based on the distributional hypothesis, DSMs encode patterns
of word co-occurrence in text corpora. These models have
been successfully applied for the estimation of lexical semantic
similarity and used broadly in a variety of NLP tasks.

Howeyver, traditional semantic models have been criticized
as “disembodied”, since they rely solely on linguistic informa-
tion without being grounded on human perception and action.
This problem is often referred to as the symbol grounding
problem [2]]. In the past, experiments confirmed the connection
between word semantics and human perception [3].

Multimodal semantic models have been employed to en-
counter the symbol grounding problem via the incorporation
of multiple perceptual modalities into word representations [4],
[S]], [6]. Multimodal semantic models have also been applied
for various multimodal tasks, including audio auto-tagging and
music similarity estimation [7], music instrument clustering
[8]], image labeling and retrieval [9]], etc. The term multimodal
fusion is used to indicate the integration of information from
multiple modalities.

In this work, we fuse text-, audio- and image-based models
for the estimation of word semantic similarity. Two main
fusion methods are employed here, namely middle and late
fusion. In addition, a method is proposed for the estimation of

fusion weights based on the sensorial scores of each word, i.e.,
the degree of relevance of each word with the auditory and
visual modality. To the best of our knowledge, this is the first
attempt to include both the auditory and visual modalities for
the computation of joint, multimodal semantic representations
of words.

II. RELATED WORK

In this section, an overview of unimodal semantic models is
provided, along with indicative references to research efforts
dealing with the fusion of such models.

A. Text-based Semantic Models

DSMs aim to to represent the semantics of words as vectors
in high-dimensional spaces. Such spaces enable the compu-
tation of similarity between words as the vector similarity
of their representations. One of the most common ways of
creating DSMs is through vector spaces [10], where the vectors
are constructed by obtaining co-occurence counts from text
corpora by considering the “context” of the target words. For
example when the semantic space is constructed using the
Latent Semantic Analysis [11] method, the context is defined
as the paragraph (or document) where the target word occurs.
Another example is the Hyperspace Analog to Language
model (HAL) [12], where context is defined as the surrounding
words of the target word within a predefined window size.

A more recent approach of creating DSMs is through the
extraction of word embeddings, i.e., real-valued vector repre-
sentations of words, from Neural Language Models (NLMs).
One of the early NLM approaches is proposed in [13] relying
on a probabilistic model that consists of a shallow feed-
forward neural network. The network is trained on a large
corpus to predict the next word given a sequence of words
and is composed of three layers. Recent NLMs are based on
the same principle, but the intermediate layer is substituted
with an Long Short Term Memory network (LSTM) [14],
[15]. An approach for constructing word embeddings that
has gained in popularity is word2vec [16], which focuses on
computational efficiency. To this end, word2vec forgoes with
the expensive intermediate layers and proposes two training
strategies, skip-gram where the model is trained to predict
the context (surrounding words) of a target word and CBOW
where the model is trained to predict a target word given a
window of surrounding words. Another popular alternative for



computing word embeddings which focuses on computational
efficiency is fastText [[17]].

B. Audio-based Semantic Models

Audio-based semantic models enable the computation of
word semantic representations by taking into account the
association of tags with audio clips in clip collections. In [18]
an audio-based DSM was constructed using the Bag-of-Audio-
Words (BoAW) technique. The model was extended in [8] by
combining linguistic and auditory features. Typically, ADSMs
are constructed via a three step procedure. First, acoustic
features (e.g., Mel-scale Frequency Cepstral Coefficients -
MFCCs) are extracted from segmented audio clips. Then, clip
vector representations are computed using the Bag-of-Audio-
Words (BoAW) method. Specifically, the acoustic feature
vectors extracted from the segments of a clip, ¢, are quantized
to the nearest clusters (called audio-words) and clip ¢ is
represented as a bag (or histogram) of audio-words. The final
step is the computation of tag representations. Each tag derives
a BoAW representation by averaging the representations of the
clips annotated with this tag. The aforementioned steps, are
detailed in [19].

C. Image-based Semantic Models

As in the case of audio-based semantic models, semantically
tagged images (i.e., images associated with lexical descriptions
of the depicted content) can be exploited for the construction
of semantic models. In [20], text-based and visual-based
multimodal models using Bag of Visual Words (BoVW) repre-
sentations [21] are extracted from a collection of news articles
along with article images. The BoVW representations are
derived via the extraction of (scale-invariant feature transform)
SIFT [22] features from images and the vector quantization
using k-means clustering. In [23], [24], traditional DSMs
and visual DSMs (VDSMs) are constructed and two methods
are proposed for fusion. According to the first method, the
vectors of the respective spaces are concatenated into a joint
multimodal space. Using the second method, the unimodal
representations are used individually to produce similarity
scores between pairs of words and the individual scores are
then averaged (using weights) for the computation of the final
score. A method to extract embeddings for images with the use
of a Deep Convolutional Neural Network (CNN) is proposed
in [25], where the CNN architecture proposed in [26] was
adopted and trained on ImageNet [27]]. In [25]], is demonstrated
that CNN embeddings outperform their BoVW counterpart on
semantic similarity tasks.

III. MULTIMODAL FUSION

In this section, three types of fusion schemes are presented.
The first scheme (middle fusion, see Section deals
with the creation of multimodal semantic representation for
the words of interest. Such representations are exploited for
computing word semantic similarity. A late fusion scheme
is presented in Section where modality-specific word
similarity scores are combined. The information exploited in

middle and late fusion schemes (semantic representations and
similarity scores) are linearly combined via weights that do
not depend on the words (¢ and j) for which the similarity
is computed. In Section the sensory content (“audio-
ness” and “visual-ness” scores) of ¢ and j is taken into account
for weighting their respective semantic representations (middle
fusion) and similarity scores (late fusion).

A. Middle Fusion

Middle fusion works in two steps. First, given a word ¢,
unimodal representations derived from text-, audio- and image-
based models (denoted as 7%, 4, 1, respectively) are fused.
Thus, a joint multimodal representation 7, ;, is computed for
i
[ (1)
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where || denotes the vector concatenation operator and
ur,ua,uy € [0,1] correspond to the fusion weights for each
modality and sum up to one. The estimation of semantic
similarity between two words, ¢ and j, is estimated in the
multimodal space as a similarity metric between the corre-
sponding multimodal representations:

Saer(iy§) = $(Fhyar Thiar)s )

where s(z,y) denotes a similarity metric between vectors z
and y. Here, cosine similarity is used as a similarity metric.

B. Late Fusion

Using late fusion, the semantic similarity between two
words, ¢ and j, is estimated for each modality separately,
resulting in the following three similarity scores sr(i,j),
sal(i,j), sy(i,7), corresponding to the text, audio and visual
space respectively:

ST(Z?j) = S(ré"a T%)v
sa(ir ) = s(ra, ), (3)
sv(i,j) = s(ry, ).
Then, the final similarity score is computed as the weighted
combination of the modality-specific similarity scores:

Srr(i,5) = Arst(i,7) + Aasa(i, j) + Avsv(4,5), @)

where Ap, A4 and Ay are the fusion weights for the three
modalities and A + A g + Ay = 1.

C. Sensory Aware Multimodal Models (SaMM)

The motivation behind this method is that some words are
inherently more relevant to specific perceptual modalities and
less relevant to other modalities. For example, the word ‘red’
is primarily relevant to the visual modality while ‘guitar’ is
primarily associated with the acoustic modality. The weights
that described in Sections [[IIZAl and [I[-Bl for the fusion of the
three modalities are common for each word and independent
from its sensorial properties. Therefore, we propose a new
method that takes into account the sensorial properties of
words and assigns different weights to each word based
on their sensorial properties. To achieve this we use the



Sensicon lexicon [28]] which contains 22684 English words
and associates each word with 5 numerical scores. The scores
correspond to the relevance of the word to each of the 5 senses,
namely vision, hearing, taste, smell and touch. In this work,
values corresponding to visual and audio scores are used.
Some examples scores from Sensicon are presented in Table [l]
We observe that the word “red” is primarily associated with
the visual sense, “dog” has a balanced score between hearing
and vision, while “guitar” is primarily associated to hearing.

Word | Visual Score | Audio Score
red 0.83 0.31
dog 0.36 0.44

guitar 0.23 0.74

TABLE I: Examples from the Sensicon lexicon

Next, we describe two sensory-aware fusion weight compu-
tation strategies, one for middle fusion and one for late fusion.

Middle Fusion: the text modality weight ur is a word-
independent parameter

ur=a, 0<a<l. ®))

The audio weight for the word 7 is computed using the

following equation:
. By
wly = [ A, ©)
A B, 1%

where (3% and (! are the “hearing” and “vision” score
respectively, retrieved from Sensicon. The motivation behind
(6] is that if a word is e.g., more relevant to the hearing sense
than the vision, the audio modality should contribute more
than the visual. The square root function smooths the ratios
of the Sensicon scores. We compute ui, from the constraint
ul, +ul.+u’y = 1. In the case of middle fusion, these weights
are used for the weighting of the multimodal vectors in (.

Late Fusion: Here, we follow a diffrent approach from
middle fusion, since we are weighting similarities for word
pairs instead of individual words, by modifying (6) to

A B4t By ) (7)
By + By

Ar and /\g’j ) are computed the same way as ur and ul,.

IV. EXPERIMENTAL SETTINGS

Text-based Model: For the text model we use the freely
available fastText pretrained embeddingsﬂ for the English
language. The model consists of 300-dimensional vectors
for 2519371 English words trained on the entire Wikipedia
corpus. The vectors were constructed using a subword model
[29], which is an extension of the skip-gram model [16]
that takes into account the morphological properties of words
and character-level information. Because of this, the subword

Uhttps://github.com/facebookresearch/fastText

model is able to create better representations for rare words
and even produce vectors for words that do not exist in the
training corpus.

Audio-based Model: The ADSM was built on 11192 audio
clips and 2467 unique tags downloaded from the online
search engine Freesound [30] using the Freesound API. The
audio clips were converted to WAV format and resampled to
22.05kHz. For each clip, a feature vector is extracted from
windows of 250 ms with a step of 100 ms. The feature vectors
consist of 13 MFCCs (concatenated with spectral energy), and
their 1st and 2nd order derivatives, yielding a vector of 39
coefficients. These features are clustered to k& = 300 clusters
using mini-batch k-means [31]. The ADSM was built using
the BOAW method described in Section [[I-B] resulting in 2467
word representations of length 300.

Image-based Model: For the visual model (VDSM) we
considered using both BoVW and CNN image representations
of the images in the ESP game dataset [32]. The ESP game
dataset contains 100000 images labeled with 29845 unique
tags by human annotators. The annotation of the images is
done through a game with a purpose, where 2 randomly
matched annotators, who cannot communicate with each other,
are presented with the same image and must agree on an
appropriate tag that describes the image. The ESP game dataset
images illustrate complex scenes with multiple and frequently
off-center objects with a variety of tags, which leads to a
dataset with more noisy images than e.g., ImageNet [23]] but
also to a dataset with increased word coverage which can
capture more complex interpretations of images. The image
embeddings were extracted from the 7th layer of AlexNet
using the Caffe deep learning framework [33]] and the MMFeat
framework [34].

Multimodal Fusion: We experimented both with middle
and late fusion for the multimodal model construction as
described in Sections The optimal set of fusion
weights (ur,ua,uy) and (Ap, Aa, A\y) were computed using
exhaustive search and applying the methods described in

Section

V. EVALUATION RESULTS

The Multimodal Semantic Models (MMSMs) are evaluated
for the task of word semantic similarity computation. We use
the MEN [23]] and SimLex-999 [35] datasets as the ground
truth. Both datasets are provided in the form of lists of word
pairs, where each pair is associated with a similarity score.
This score was computed by averaging the similarities that
provided by human annotators. In order to provide equal
comparisons between different semantic models, all models
are evaluated on words for which text-, audio- and image-
based representations are available. This process reduces the
number of pairs from 3000 to 2243 for MEN and from 999
to 244 for Simlex-999. Regarding the proposed (automatic)
models, the similarity score between two words is estimated
as the cosine similarity between the corresponding vector
representations. The Spearman correlation coefficient between


https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

| Text | Audio | Visual || (ur,ua,uy) | MEN || (ur,us,uy) | SimLex-999 |

7 1.0,00,00) | 0768 || (1.0, 0.0, 0.0) 0378

v 0.0, 1.0, 0.0) 0.428 0.0, 1.0, 0.0) 0.296

v (0.0, 0.0, 1.0) 0.530 (0.0, 0.0, 1.0) 0.119

v v 0.7, 0.3, 0.0) 0.785 (0.6, 0.4, 0.0) 0.420

v v 0.6, 0.0, 0.9) 0.782 (1.0, 0.0, 0.0) 0.378

v v 0.0, 0.6, 0.4) 0.608 (0.0, 1.0, 0.0) 0.296

v v v 0.5, 0.2, 0.3) 0.795 0.6, 0.4, 0.0) 0.420

v v v SaMM (a = 0.5) | 0.793 SaMM (a = 0.6) 0.401

TABLE II: Middle fusion: correlation coef. for MEN and SimLex-999 datasets.

| Text | Audio | Visual ||  (Ar,Aa,Av) | MEN || (A7, 4,Ay) | SimLex-999 |

v (1.0, 0.0, 0.0) 0.768 (1.0, 0.0, 0.0) 0.378

v (0.0, 1.0, 0.0) 0.428 (0.0, 1.0, 0.0) 0.296

v 0.0, 0.0, 1.0) 0.530 0.0, 0.0, 1.0) 0.119

v v 0.8, 0.2, 0.0) 0.786 0.8, 0.2, 0.0) 0.421

v v 0.7, 0.0, 0.3) 0.782 (1.0, 0.0, 0.0) 0.378

v v (0.0, 0.7, 0.3) 0.609 (0.0, 1.0, 0.0) 0.296

v v v 0.6, 0.2, 0.2) 0.797 0.8, 0.2, 0.0) 0.421

v v v SaMM (¢ = 0.6) | 0.796 || SaMM (a = 0.7) 0.402

TABLE III: Late fusion: correlation coef. for MEN and SimLex-999 datasets.

the human and the automatically computed similarity scores
was used as evaluation metric.

The resu]tsﬂ for all MMSM5E| using middle fusion are
presented in Table The three leftmost columns indicate
whether the corresponding model (Text, Audio, Visual) is
used (v'). The first three rows illustrate the performance of
each individual (i.e., unimodal) model, while the next three
rows deal with the performance of each combination of two
unimodal models. The last two rows contain the 3-modality
MMSM and the 3-modality SaMM respectively. Similarly to
middle fusion, we report the late fusion evaluation results for
the optimal parameters of all MMSMs in Table [ITI}

The best correlation achieved for MEN using middle fusion
is 0.795 via the fusion of the three models outperforming
any other combination as well as the three unimodal models.
Using middle fusion for SimLex-999, it is observed that the
weights assigned to the visual modality are zero for all model
combinations. The highest correlation (0.420) is achieved via
the fusion of the text-based with the audio-based model.
Regarding late fusion (see Table [II), the best correlation
achieved for MEN is 0.797 via the fusion of the three models,
while for SimLex-999 the best correlation is 0.421 via the
fusion of the text and audio modalities.

In this paragraph, a brief overview of the performance of
state-of-the-art MMSMs is provided for the word similarity
task. Those results are not directly comparable to the results

2All the reported Spearmans coefficients are statistically significant with
respect to a random model at 95% level according to paired-sample t-test.

3We observed that CNN vectors outperformed BoVW in all experimental
configurations. So, the experimental results are reported only for the case of
CNN vectors.

presented in this work because the text model and the subsets
of MEN and Simlex-999 used for evaluation are different. f] In
[23], a BoVW-based visual DSM was combined with a text
DSM and a correlation of 0.78 was reported for the MEN
dataset. In [18] a BoAW-based audio DSM was fused with a
text DSM yielding 0.689 and 0.493 correlation for MEN and
Simlex-999, respectively. In [5], a CNN-based visual DSM
was combined with a text DSM and a correlation of 0.727 and
0.38 was reported for MEN and Simlex-999, respectively. Also
in [5] a BoOAW model was fused with a text DSM achieving
0.697 correlation for the MEN dataset.

Unlike the aforementioned approaches, the present work
constitutes the first research effort where all three modalities
are fused for estimating word semantic similarity.

VI. CONCLUSIONS

In this work, we created MMSMs with the goal to ground
semantic representations on the audio and visual modalities.
Also, we proposed a fusion method that assigns different
fusion weights to the text, audio and visual spaces based on the
relevance of each word to the auditory and visual modalities.
All fusion methods were evaluated for the task of semantic
similarity computation between words. To the best of our
knowledge, this is the first work that exploits text-based, audio-
based and visual-based models for this task. It was shown that
the multimodal model derived from the fusion of the three
unimodal models outperforms each unimodal model (relative
improvement 11.3% compared to the best unimodal model)

4The lack of a shared evaluation dataset for multimodal semantic models
is a common issue. However, we think useful to mention the performance of
related works.



and every other combination of unimodal models. Also the
SaMM achieved comparable performance with that of the
optimal MMSMs, and exceeded the unimodal and most of the
bimodal MMSMs, both using middle fusion and late fusion. In
the case of MEN, we see that the optimal weight distribution
favors a balanced audio and visual modality contribution. This
means that the audio and visual modalities provide comple-
mentary information and both enhance the text modality. In
the case of Simlex we observe that incorporating the visual
modality has detrimental effects. This may be caused by the
choice of ESP game for the visual model construction.

In the future we plan to investigate more methods for the
construction of SaMMs and use machine learning techniques
to automate the parameter tuning process. We also plan to
experiment with more image datasets (e.g., ImageNet) and
investigate their effectiveness especially on Simlex-999. Fi-
nally, we plan to apply multimodal semantic models and more
fusion methods for various multimodal tasks, such as zero-shot
learning via cross-modal mappings.
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